Loading…

Thermal Properties and Kinetics of Al/α-MnO2 Nanostructure Thermite

In this work, thermal properties and kinetics of Al-nanoparticles/α-MnO2 nanorods thermite were reported. The α-MnO2 nanorods were synthesized using a hydrothermal method and were characterized by X-ray powder diffraction (XRD) and X-ray photoelectron spectra (XPS), then combined with Al nanoparticl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Brazilian Chemical Society 2018-02, Vol.29 (2), p.404-411
Main Authors: Song, Jia-Xing, Fang, Xiang, Guo, Tao, Bei, Feng-Li, Ding, Wen, Zhang, Xiao-Nan, Yao, Miao, Yu, Hong-Jun
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, thermal properties and kinetics of Al-nanoparticles/α-MnO2 nanorods thermite were reported. The α-MnO2 nanorods were synthesized using a hydrothermal method and were characterized by X-ray powder diffraction (XRD) and X-ray photoelectron spectra (XPS), then combined with Al nanoparticles based on the ultrasonic mixing method to prepare the nanostructure thermite. Besides, both pure components and mixture were characterized by field emission scanning electron microscopy (FE-SEM) to observe their morphologies and structures. Subsequently, the thermal properties of Al/α-MnO2 nanostructure thermite were studied on the basis of thermogravimetric-differential scanning calorimetry (TG-DSC). According to the TG-DSC tests, the calculation results of activation energy for kinetics of Al/α-MnO2 thermite were obtained using different isoconversional methods. It was found that Al/α-MnO2 nanostructure thermite has high heat release and low onset temperature, and the heat release of the nanostructure thermite was approximately 1146.6 J g -1.
ISSN:0103-5053
1678-4790
DOI:10.21577/0103-5053.20170154