Loading…

Methods of analysis and number of replicates for trials with large numbers of soybean genotypes

The aim of this study was to evaluate the experimental precision of different methods of statistical analysis for trials with large numbers of soybean genotypes, and their relationship with the number of replicates. Soybean yield data (nine trials; 324 genotypes; 46 cultivars; 278 lines; agricultura...

Full description

Saved in:
Bibliographic Details
Published in:Ciência rural 2017, Vol.47 (4)
Main Authors: Matei, Gilvani, Benin, Giovani, Storck, Lindolfo, Milioli, Anderson Simionato, Bozi, Antonio Henrique, Dalló, Samuel Cristian, Lucion, Ricardo Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3
cites cdi_FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3
container_end_page
container_issue 4
container_start_page
container_title Ciência rural
container_volume 47
creator Matei, Gilvani
Benin, Giovani
Storck, Lindolfo
Milioli, Anderson Simionato
Bozi, Antonio Henrique
Dalló, Samuel Cristian
Lucion, Ricardo Antonio
description The aim of this study was to evaluate the experimental precision of different methods of statistical analysis for trials with large numbers of soybean genotypes, and their relationship with the number of replicates. Soybean yield data (nine trials; 324 genotypes; 46 cultivars; 278 lines; agricultural harvest of 2014/15) were used. Two of these trials were performed at the same location, side by side, forming a trial with six replicates. Each trial was analyzed by the randomized complete block, triple lattice design, and use of the Papadakis method. The selective accuracy, least significant difference, and Fasoulas differentiation index were estimated, and model assumptions were tested. The resampling method was used to study the influence of the number of replicates, by varying the number of blocks and estimating the precision measurements. The experimental precision indicators of the Papadakis method are more favorable as compared to the randomized complete block design and triple lattice. To obtain selective accuracy above the high experimental precision range in trials with 324 soybean genotypes, two repetitions can be used, and data can be analyzed using the randomized complete block design or Papadakis method. RESUMO: O objetivo deste estudo foi avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com grande número de genótipos de soja e sua relação com o número de repetições. Foram usados dados de produtividade de grãos de soja (nove ensaios, 324 genótipos, 46 cultivares, 278 linhagens, safra agrícola de 2014/15). Dois destes ensaios foram realizados no mesmo local, lado a lado, constituindo um ensaio com seis repetições. Cada ensaio foi analisado pelos delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Foram estimados a acurácia seletiva, diferença mínima significativa e índice de diferenciação de Fasoulas, e, ainda foram testados os pressupostos do modelo. O método de reamostragem foi usado para estudar a influência do número de repetições, variando o número de blocos e estimando as medidas de precisão. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Para obter acurácia seletiva acima da faixa de alta precisão experimental em ensaios com 324 genótipos de soja, pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completos ao acaso ou método de Papa
doi_str_mv 10.1590/0103-8478cr20160629
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_scielo_journals_S0103_84782017000400202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0103_84782017000400202</scielo_id><doaj_id>oai_doaj_org_article_c5063bb9eb0a426fbb8f41cab882a183</doaj_id><sourcerecordid>2492292455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3</originalsourceid><addsrcrecordid>eNpNkUtPwzAQhCMEEqXwC7hE4tyyfiSxj6jiUamIA3C2bGfdpkrjYqdC-fckbdVy2tVoZrT6NknuCUxJJuERCLCJ4IWwgQLJIafyIhmd1Mt_-3VyE-MagBaM81Gi3rFd-TKm3qW60XUXq9gvZdrsNgbDIAfc1pXVLcbU-ZC2odJ1TH-rdpXWOizxaN1XRN8Z1E26xMa33RbjbXLlejveHec4-X55_pq9TRYfr_PZ02JiOS3aiWQmZ1JoW5SZlaIQ6Cx3RSkdFw5zBGuYIaIoOcsNtdwaQrCUSIBQDrlh42R-6C29XqttqDY6dMrrSu0FH5ZKh7ayNSqbQc6MkWhAc5o7Y4TjxGojBNVEsL5reuiKtsLaq7XfhR5NVJ8DRTVQ7CkXAMB7jkD7wMMhsA3-Z4exPUcol5RKyrOsd7GDywYfY0B3OpOAGt6oTvXnN7I_nTuOfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492292455</pqid></control><display><type>article</type><title>Methods of analysis and number of replicates for trials with large numbers of soybean genotypes</title><source>Publicly Available Content (ProQuest)</source><source>SciELO</source><source>Alma/SFX Local Collection</source><creator>Matei, Gilvani ; Benin, Giovani ; Storck, Lindolfo ; Milioli, Anderson Simionato ; Bozi, Antonio Henrique ; Dalló, Samuel Cristian ; Lucion, Ricardo Antonio</creator><creatorcontrib>Matei, Gilvani ; Benin, Giovani ; Storck, Lindolfo ; Milioli, Anderson Simionato ; Bozi, Antonio Henrique ; Dalló, Samuel Cristian ; Lucion, Ricardo Antonio ; Universidade Federal de Santa Maria (UFSM), Brazil ; Universidade Tecnológica Federal do Paraná (UTFPR), Brazil</creatorcontrib><description>The aim of this study was to evaluate the experimental precision of different methods of statistical analysis for trials with large numbers of soybean genotypes, and their relationship with the number of replicates. Soybean yield data (nine trials; 324 genotypes; 46 cultivars; 278 lines; agricultural harvest of 2014/15) were used. Two of these trials were performed at the same location, side by side, forming a trial with six replicates. Each trial was analyzed by the randomized complete block, triple lattice design, and use of the Papadakis method. The selective accuracy, least significant difference, and Fasoulas differentiation index were estimated, and model assumptions were tested. The resampling method was used to study the influence of the number of replicates, by varying the number of blocks and estimating the precision measurements. The experimental precision indicators of the Papadakis method are more favorable as compared to the randomized complete block design and triple lattice. To obtain selective accuracy above the high experimental precision range in trials with 324 soybean genotypes, two repetitions can be used, and data can be analyzed using the randomized complete block design or Papadakis method. RESUMO: O objetivo deste estudo foi avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com grande número de genótipos de soja e sua relação com o número de repetições. Foram usados dados de produtividade de grãos de soja (nove ensaios, 324 genótipos, 46 cultivares, 278 linhagens, safra agrícola de 2014/15). Dois destes ensaios foram realizados no mesmo local, lado a lado, constituindo um ensaio com seis repetições. Cada ensaio foi analisado pelos delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Foram estimados a acurácia seletiva, diferença mínima significativa e índice de diferenciação de Fasoulas, e, ainda foram testados os pressupostos do modelo. O método de reamostragem foi usado para estudar a influência do número de repetições, variando o número de blocos e estimando as medidas de precisão. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Para obter acurácia seletiva acima da faixa de alta precisão experimental em ensaios com 324 genótipos de soja, pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completos ao acaso ou método de Papadakis.</description><identifier>ISSN: 0103-8478</identifier><identifier>ISSN: 1678-4596</identifier><identifier>EISSN: 0103-8478</identifier><identifier>EISSN: 1678-4596</identifier><identifier>DOI: 10.1590/0103-8478cr20160629</identifier><language>eng</language><publisher>Santa Maria: Universidade Federal de Santa Maria Centro de Ciencias Rurais</publisher><subject>Accuracy ; acurácia seletiva ; AGRONOMY ; Crop yield ; Cultivars ; delineamento experimental ; Efficiency ; Genotype &amp; phenotype ; Genotypes ; Glycine max ; Lattice design ; Methods ; Model testing ; precisão experimental ; reamostragem ; Resampling ; Software ; Soybeans ; Spatial analysis ; Statistical analysis ; Statistical methods</subject><ispartof>Ciência rural, 2017, Vol.47 (4)</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/deed.en (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3</citedby><cites>FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2492292455/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2492292455?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4024,24150,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Matei, Gilvani</creatorcontrib><creatorcontrib>Benin, Giovani</creatorcontrib><creatorcontrib>Storck, Lindolfo</creatorcontrib><creatorcontrib>Milioli, Anderson Simionato</creatorcontrib><creatorcontrib>Bozi, Antonio Henrique</creatorcontrib><creatorcontrib>Dalló, Samuel Cristian</creatorcontrib><creatorcontrib>Lucion, Ricardo Antonio</creatorcontrib><creatorcontrib>Universidade Federal de Santa Maria (UFSM), Brazil</creatorcontrib><creatorcontrib>Universidade Tecnológica Federal do Paraná (UTFPR), Brazil</creatorcontrib><title>Methods of analysis and number of replicates for trials with large numbers of soybean genotypes</title><title>Ciência rural</title><addtitle>Cienc. Rural</addtitle><description>The aim of this study was to evaluate the experimental precision of different methods of statistical analysis for trials with large numbers of soybean genotypes, and their relationship with the number of replicates. Soybean yield data (nine trials; 324 genotypes; 46 cultivars; 278 lines; agricultural harvest of 2014/15) were used. Two of these trials were performed at the same location, side by side, forming a trial with six replicates. Each trial was analyzed by the randomized complete block, triple lattice design, and use of the Papadakis method. The selective accuracy, least significant difference, and Fasoulas differentiation index were estimated, and model assumptions were tested. The resampling method was used to study the influence of the number of replicates, by varying the number of blocks and estimating the precision measurements. The experimental precision indicators of the Papadakis method are more favorable as compared to the randomized complete block design and triple lattice. To obtain selective accuracy above the high experimental precision range in trials with 324 soybean genotypes, two repetitions can be used, and data can be analyzed using the randomized complete block design or Papadakis method. RESUMO: O objetivo deste estudo foi avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com grande número de genótipos de soja e sua relação com o número de repetições. Foram usados dados de produtividade de grãos de soja (nove ensaios, 324 genótipos, 46 cultivares, 278 linhagens, safra agrícola de 2014/15). Dois destes ensaios foram realizados no mesmo local, lado a lado, constituindo um ensaio com seis repetições. Cada ensaio foi analisado pelos delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Foram estimados a acurácia seletiva, diferença mínima significativa e índice de diferenciação de Fasoulas, e, ainda foram testados os pressupostos do modelo. O método de reamostragem foi usado para estudar a influência do número de repetições, variando o número de blocos e estimando as medidas de precisão. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Para obter acurácia seletiva acima da faixa de alta precisão experimental em ensaios com 324 genótipos de soja, pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completos ao acaso ou método de Papadakis.</description><subject>Accuracy</subject><subject>acurácia seletiva</subject><subject>AGRONOMY</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>delineamento experimental</subject><subject>Efficiency</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Glycine max</subject><subject>Lattice design</subject><subject>Methods</subject><subject>Model testing</subject><subject>precisão experimental</subject><subject>reamostragem</subject><subject>Resampling</subject><subject>Software</subject><subject>Soybeans</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0103-8478</issn><issn>1678-4596</issn><issn>0103-8478</issn><issn>1678-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPwzAQhCMEEqXwC7hE4tyyfiSxj6jiUamIA3C2bGfdpkrjYqdC-fckbdVy2tVoZrT6NknuCUxJJuERCLCJ4IWwgQLJIafyIhmd1Mt_-3VyE-MagBaM81Gi3rFd-TKm3qW60XUXq9gvZdrsNgbDIAfc1pXVLcbU-ZC2odJ1TH-rdpXWOizxaN1XRN8Z1E26xMa33RbjbXLlejveHec4-X55_pq9TRYfr_PZ02JiOS3aiWQmZ1JoW5SZlaIQ6Cx3RSkdFw5zBGuYIaIoOcsNtdwaQrCUSIBQDrlh42R-6C29XqttqDY6dMrrSu0FH5ZKh7ayNSqbQc6MkWhAc5o7Y4TjxGojBNVEsL5reuiKtsLaq7XfhR5NVJ8DRTVQ7CkXAMB7jkD7wMMhsA3-Z4exPUcol5RKyrOsd7GDywYfY0B3OpOAGt6oTvXnN7I_nTuOfQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Matei, Gilvani</creator><creator>Benin, Giovani</creator><creator>Storck, Lindolfo</creator><creator>Milioli, Anderson Simionato</creator><creator>Bozi, Antonio Henrique</creator><creator>Dalló, Samuel Cristian</creator><creator>Lucion, Ricardo Antonio</creator><general>Universidade Federal de Santa Maria Centro de Ciencias Rurais</general><general>Universidade Federal de Santa Maria</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>GPN</scope><scope>DOA</scope></search><sort><creationdate>2017</creationdate><title>Methods of analysis and number of replicates for trials with large numbers of soybean genotypes</title><author>Matei, Gilvani ; Benin, Giovani ; Storck, Lindolfo ; Milioli, Anderson Simionato ; Bozi, Antonio Henrique ; Dalló, Samuel Cristian ; Lucion, Ricardo Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>acurácia seletiva</topic><topic>AGRONOMY</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>delineamento experimental</topic><topic>Efficiency</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Glycine max</topic><topic>Lattice design</topic><topic>Methods</topic><topic>Model testing</topic><topic>precisão experimental</topic><topic>reamostragem</topic><topic>Resampling</topic><topic>Software</topic><topic>Soybeans</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matei, Gilvani</creatorcontrib><creatorcontrib>Benin, Giovani</creatorcontrib><creatorcontrib>Storck, Lindolfo</creatorcontrib><creatorcontrib>Milioli, Anderson Simionato</creatorcontrib><creatorcontrib>Bozi, Antonio Henrique</creatorcontrib><creatorcontrib>Dalló, Samuel Cristian</creatorcontrib><creatorcontrib>Lucion, Ricardo Antonio</creatorcontrib><creatorcontrib>Universidade Federal de Santa Maria (UFSM), Brazil</creatorcontrib><creatorcontrib>Universidade Tecnológica Federal do Paraná (UTFPR), Brazil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SciELO</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ciência rural</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matei, Gilvani</au><au>Benin, Giovani</au><au>Storck, Lindolfo</au><au>Milioli, Anderson Simionato</au><au>Bozi, Antonio Henrique</au><au>Dalló, Samuel Cristian</au><au>Lucion, Ricardo Antonio</au><aucorp>Universidade Federal de Santa Maria (UFSM), Brazil</aucorp><aucorp>Universidade Tecnológica Federal do Paraná (UTFPR), Brazil</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods of analysis and number of replicates for trials with large numbers of soybean genotypes</atitle><jtitle>Ciência rural</jtitle><addtitle>Cienc. Rural</addtitle><date>2017</date><risdate>2017</risdate><volume>47</volume><issue>4</issue><issn>0103-8478</issn><issn>1678-4596</issn><eissn>0103-8478</eissn><eissn>1678-4596</eissn><abstract>The aim of this study was to evaluate the experimental precision of different methods of statistical analysis for trials with large numbers of soybean genotypes, and their relationship with the number of replicates. Soybean yield data (nine trials; 324 genotypes; 46 cultivars; 278 lines; agricultural harvest of 2014/15) were used. Two of these trials were performed at the same location, side by side, forming a trial with six replicates. Each trial was analyzed by the randomized complete block, triple lattice design, and use of the Papadakis method. The selective accuracy, least significant difference, and Fasoulas differentiation index were estimated, and model assumptions were tested. The resampling method was used to study the influence of the number of replicates, by varying the number of blocks and estimating the precision measurements. The experimental precision indicators of the Papadakis method are more favorable as compared to the randomized complete block design and triple lattice. To obtain selective accuracy above the high experimental precision range in trials with 324 soybean genotypes, two repetitions can be used, and data can be analyzed using the randomized complete block design or Papadakis method. RESUMO: O objetivo deste estudo foi avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com grande número de genótipos de soja e sua relação com o número de repetições. Foram usados dados de produtividade de grãos de soja (nove ensaios, 324 genótipos, 46 cultivares, 278 linhagens, safra agrícola de 2014/15). Dois destes ensaios foram realizados no mesmo local, lado a lado, constituindo um ensaio com seis repetições. Cada ensaio foi analisado pelos delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Foram estimados a acurácia seletiva, diferença mínima significativa e índice de diferenciação de Fasoulas, e, ainda foram testados os pressupostos do modelo. O método de reamostragem foi usado para estudar a influência do número de repetições, variando o número de blocos e estimando as medidas de precisão. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Para obter acurácia seletiva acima da faixa de alta precisão experimental em ensaios com 324 genótipos de soja, pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completos ao acaso ou método de Papadakis.</abstract><cop>Santa Maria</cop><pub>Universidade Federal de Santa Maria Centro de Ciencias Rurais</pub><doi>10.1590/0103-8478cr20160629</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0103-8478
ispartof Ciência rural, 2017, Vol.47 (4)
issn 0103-8478
1678-4596
0103-8478
1678-4596
language eng
recordid cdi_scielo_journals_S0103_84782017000400202
source Publicly Available Content (ProQuest); SciELO; Alma/SFX Local Collection
subjects Accuracy
acurácia seletiva
AGRONOMY
Crop yield
Cultivars
delineamento experimental
Efficiency
Genotype & phenotype
Genotypes
Glycine max
Lattice design
Methods
Model testing
precisão experimental
reamostragem
Resampling
Software
Soybeans
Spatial analysis
Statistical analysis
Statistical methods
title Methods of analysis and number of replicates for trials with large numbers of soybean genotypes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20of%20analysis%20and%20number%20of%20replicates%20for%20trials%20with%20large%20numbers%20of%20soybean%20genotypes&rft.jtitle=Ci%C3%AAncia%20rural&rft.au=Matei,%20Gilvani&rft.aucorp=Universidade%20Federal%20de%20Santa%20Maria%20(UFSM),%20Brazil&rft.date=2017&rft.volume=47&rft.issue=4&rft.issn=0103-8478&rft.eissn=0103-8478&rft_id=info:doi/10.1590/0103-8478cr20160629&rft_dat=%3Cproquest_doaj_%3E2492292455%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-93b6398ac7d5c9878efc4f7d9f48fe6e0cb3b187d436b2c4cb11ed9e1012406b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492292455&rft_id=info:pmid/&rft_scielo_id=S0103_84782017000400202&rfr_iscdi=true