Loading…

Bayesian modeling of the coffee tree growth curve

When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been sho...

Full description

Saved in:
Bibliographic Details
Published in:Ciência rural 2022, Vol.52 (9)
Main Authors: Pereira, Adriele Aparecida, Silva, Edilson Marcelino, Fernandes, Tales Jesus, Morais, Augusto Ramalho de, Sáfadi, Thelma, Muniz, Joel Augusto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043
cites cdi_FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043
container_end_page
container_issue 9
container_start_page
container_title Ciência rural
container_volume 52
creator Pereira, Adriele Aparecida
Silva, Edilson Marcelino
Fernandes, Tales Jesus
Morais, Augusto Ramalho de
Sáfadi, Thelma
Muniz, Joel Augusto
description When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time. RESUMO: Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse
doi_str_mv 10.1590/0103-8478cr20210275
format article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0103_84782022000900203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0103_84782022000900203</scielo_id><sourcerecordid>S0103_84782022000900203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEqHwBWzyAykzYydOllDxkiqxANaW40ebKq2RnYL69yQqKpuZzT0zOpexW4Q5lg3cAQIvaiFrEwkIgWR5xjKsZF2IsqnOWXZKXLKrlDYwRrgQGcMHfXCp07t8G6zru90qDz4f1i43wXvn8iGOYxXDz7DOzT5-u2t24XWf3M3fnrHPp8ePxUuxfHt-XdwvC0MVHwrdcO8QjeNgoTLWNCRKC9559GQFCWtaWaGhliSVRCi9kRWV2mrULQg-Y_Pj3WQ61we1Cfu4Gx-q98lFTS6jKwFAM9oAHwF-BEwMKUXn1VfstjoeFIKaalIn8L8m_gvpkFgF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian modeling of the coffee tree growth curve</title><source>SciELO Brazil</source><source>Alma/SFX Local Collection</source><creator>Pereira, Adriele Aparecida ; Silva, Edilson Marcelino ; Fernandes, Tales Jesus ; Morais, Augusto Ramalho de ; Sáfadi, Thelma ; Muniz, Joel Augusto</creator><creatorcontrib>Pereira, Adriele Aparecida ; Silva, Edilson Marcelino ; Fernandes, Tales Jesus ; Morais, Augusto Ramalho de ; Sáfadi, Thelma ; Muniz, Joel Augusto</creatorcontrib><description>When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time. RESUMO: Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.</description><identifier>ISSN: 0103-8478</identifier><identifier>ISSN: 1678-4596</identifier><identifier>EISSN: 1678-4596</identifier><identifier>DOI: 10.1590/0103-8478cr20210275</identifier><language>eng</language><publisher>Universidade Federal de Santa Maria</publisher><subject>AGRONOMY</subject><ispartof>Ciência rural, 2022, Vol.52 (9)</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043</citedby><cites>FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043</cites><orcidid>0000-0002-1457-9653 ; 0000-0002-4918-300X ; 0000-0001-7695-2890 ; 0000-0003-4291-8218 ; 0000-0002-2800-3495 ; 0000-0002-1069-4136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,24149,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Pereira, Adriele Aparecida</creatorcontrib><creatorcontrib>Silva, Edilson Marcelino</creatorcontrib><creatorcontrib>Fernandes, Tales Jesus</creatorcontrib><creatorcontrib>Morais, Augusto Ramalho de</creatorcontrib><creatorcontrib>Sáfadi, Thelma</creatorcontrib><creatorcontrib>Muniz, Joel Augusto</creatorcontrib><title>Bayesian modeling of the coffee tree growth curve</title><title>Ciência rural</title><addtitle>Cienc. Rural</addtitle><description>When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time. RESUMO: Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.</description><subject>AGRONOMY</subject><issn>0103-8478</issn><issn>1678-4596</issn><issn>1678-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EEqHwBWzyAykzYydOllDxkiqxANaW40ebKq2RnYL69yQqKpuZzT0zOpexW4Q5lg3cAQIvaiFrEwkIgWR5xjKsZF2IsqnOWXZKXLKrlDYwRrgQGcMHfXCp07t8G6zru90qDz4f1i43wXvn8iGOYxXDz7DOzT5-u2t24XWf3M3fnrHPp8ePxUuxfHt-XdwvC0MVHwrdcO8QjeNgoTLWNCRKC9559GQFCWtaWaGhliSVRCi9kRWV2mrULQg-Y_Pj3WQ61we1Cfu4Gx-q98lFTS6jKwFAM9oAHwF-BEwMKUXn1VfstjoeFIKaalIn8L8m_gvpkFgF</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pereira, Adriele Aparecida</creator><creator>Silva, Edilson Marcelino</creator><creator>Fernandes, Tales Jesus</creator><creator>Morais, Augusto Ramalho de</creator><creator>Sáfadi, Thelma</creator><creator>Muniz, Joel Augusto</creator><general>Universidade Federal de Santa Maria</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0002-1457-9653</orcidid><orcidid>https://orcid.org/0000-0002-4918-300X</orcidid><orcidid>https://orcid.org/0000-0001-7695-2890</orcidid><orcidid>https://orcid.org/0000-0003-4291-8218</orcidid><orcidid>https://orcid.org/0000-0002-2800-3495</orcidid><orcidid>https://orcid.org/0000-0002-1069-4136</orcidid></search><sort><creationdate>2022</creationdate><title>Bayesian modeling of the coffee tree growth curve</title><author>Pereira, Adriele Aparecida ; Silva, Edilson Marcelino ; Fernandes, Tales Jesus ; Morais, Augusto Ramalho de ; Sáfadi, Thelma ; Muniz, Joel Augusto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AGRONOMY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Adriele Aparecida</creatorcontrib><creatorcontrib>Silva, Edilson Marcelino</creatorcontrib><creatorcontrib>Fernandes, Tales Jesus</creatorcontrib><creatorcontrib>Morais, Augusto Ramalho de</creatorcontrib><creatorcontrib>Sáfadi, Thelma</creatorcontrib><creatorcontrib>Muniz, Joel Augusto</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Ciência rural</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Adriele Aparecida</au><au>Silva, Edilson Marcelino</au><au>Fernandes, Tales Jesus</au><au>Morais, Augusto Ramalho de</au><au>Sáfadi, Thelma</au><au>Muniz, Joel Augusto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian modeling of the coffee tree growth curve</atitle><jtitle>Ciência rural</jtitle><addtitle>Cienc. Rural</addtitle><date>2022</date><risdate>2022</risdate><volume>52</volume><issue>9</issue><issn>0103-8478</issn><issn>1678-4596</issn><eissn>1678-4596</eissn><abstract>When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time. RESUMO: Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.</abstract><pub>Universidade Federal de Santa Maria</pub><doi>10.1590/0103-8478cr20210275</doi><orcidid>https://orcid.org/0000-0002-1457-9653</orcidid><orcidid>https://orcid.org/0000-0002-4918-300X</orcidid><orcidid>https://orcid.org/0000-0001-7695-2890</orcidid><orcidid>https://orcid.org/0000-0003-4291-8218</orcidid><orcidid>https://orcid.org/0000-0002-2800-3495</orcidid><orcidid>https://orcid.org/0000-0002-1069-4136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0103-8478
ispartof Ciência rural, 2022, Vol.52 (9)
issn 0103-8478
1678-4596
1678-4596
language eng
recordid cdi_scielo_journals_S0103_84782022000900203
source SciELO Brazil; Alma/SFX Local Collection
subjects AGRONOMY
title Bayesian modeling of the coffee tree growth curve
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20modeling%20of%20the%20coffee%20tree%20growth%20curve&rft.jtitle=Ci%C3%AAncia%20rural&rft.au=Pereira,%20Adriele%20Aparecida&rft.date=2022&rft.volume=52&rft.issue=9&rft.issn=0103-8478&rft.eissn=1678-4596&rft_id=info:doi/10.1590/0103-8478cr20210275&rft_dat=%3Cscielo_cross%3ES0103_84782022000900203%3C/scielo_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-a93fe11ce30d06cdc9245d0fef1f2d424dcb761c2b27252217fc7625ada1ab043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0103_84782022000900203&rfr_iscdi=true