Loading…
Processes that influence dissolved organic matter in the soil: a review
In tropical regions, climate conditions favor fast decomposition of soil organic matter (SOM), releasing into the soil organic composts in solid, liquid, and gaseous forms with variable compositions. Dissolved organic matter (DOM), a complex mixture of thousands of organic compounds, is only a small...
Saved in:
Published in: | Scientia agricola 2020, Vol.77 (3) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In tropical regions, climate conditions favor fast decomposition of soil organic matter (SOM), releasing into the soil organic composts in solid, liquid, and gaseous forms with variable compositions. Dissolved organic matter (DOM), a complex mixture of thousands of organic compounds, is only a small fraction of the decomposition products; however, it is highly mobile and reactive to the soil. Therefore, DOM play a key role in soil aggregation (formation of organometallic complexes), energy source for microorganisms, as well as C storage, cycling, and provision of plant-available nutrients. DOM multifunctionality to sustain soil functions and important ecosystem services have raised global scientific interest in studies on DOM fractions. However, previous studies were conducted predominantly under temperate soil conditions in natural ecosystems. Therefore, there is paucity of information on tropical soil conditions under agricultural systems, where DOM turnover is intensified by management practices. This review synthesized information in the literature to identify and discuss the main sources, transformations, and future of DOM in soils. We also discussed the importance of this fraction in C cycling and other soil properties and processes, emphasizing agricultural systems in tropical soils. Gaps and opportunities were identified to guide future studies on DOM in tropical soils. |
---|---|
ISSN: | 1678-992X 1678-992X |
DOI: | 10.1590/1678-992x-2018-0164 |