Loading…

First-principles materials study for spintronics: MnAs and MnN

We report ab-initio all electrons density- functional calculations for the electronic structure of the compounds MnAs and MnN, in the zinc-blende phase. They are potential materials for use in fabrication of new functional semiconductors taking advantage of the spin degree of freedom. The aim is the...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of physics 2004-06, Vol.34 (2b), p.568-570
Main Authors: Paiva, R. de, Alves, J. L. A., Nogueira, R. A., Leite, J. R., Scolfaro, L. M. R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report ab-initio all electrons density- functional calculations for the electronic structure of the compounds MnAs and MnN, in the zinc-blende phase. They are potential materials for use in fabrication of new functional semiconductors taking advantage of the spin degree of freedom. The aim is the establishing of the semiconductor spin electronics (spintronics) as a practical technology [H. Ohno, Semiconductor Science and Technology 17, 4 (2002).]. We compare results obtained using the theoretical approaches LDA (Local Density Approximation) and GGA (Generalized Gradient Approximation). The calculations are spin-polarized and we follow the evolution of the band structures as a function of lattice parameter. We compare also the evolution of the density of states of the majority-spins and of the minority-spins. We conclude that, depending on the lattice parameter, both materials may be half-metallic, therefore showing conduction by charge carriers of one spin direction exclusively: the majority- spin band is continuous, while the minority-spin has a gap. Both materials reach a total magnetization of the order of 4 mB. MnN changes from paramagnetic to ferromagnetic with the increase of the lattice parameter.
ISSN:0103-9733
1678-4448
DOI:10.1590/S0103-97332004000400008