Loading…

SnO2 extended gate field-effect transistor as pH sensor

Extended gate field-effect transistor (EGFET) is a device composed of a conventional ion-sensitive electrode and a MOSFET device, which can be applied to the measurement of ion content in a solution. This structure has a lot of advantages as compared to the Ion- Sensitive Field Effect Transistor (IS...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of physics 2006-06, Vol.36 (2a), p.478-481
Main Authors: Batista, P. D., Mulato, M., Graeff, C. F. de O., Fernandez, F. J. R., Marques, F. das C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-94516a946166281be4f98c907ee41de5b61279a94486d58f32240cb35a37db1f3
cites
container_end_page 481
container_issue 2a
container_start_page 478
container_title Brazilian journal of physics
container_volume 36
creator Batista, P. D.
Mulato, M.
Graeff, C. F. de O.
Fernandez, F. J. R.
Marques, F. das C.
description Extended gate field-effect transistor (EGFET) is a device composed of a conventional ion-sensitive electrode and a MOSFET device, which can be applied to the measurement of ion content in a solution. This structure has a lot of advantages as compared to the Ion- Sensitive Field Effect Transistor (ISFET). In this work, we constructed an EGFET by connecting the sensing structure fabricated with SnO2 to a commercial MOSFET (CD4007UB). From the numerical simulation of site binding model it is possible to determine some of the desirable characteristics of the films. We investigate and compare SnO2 films prepared using both the Sol-gel and the Pechini methods. The aim is an amorphous material for the EGFET. The SnO2 powder was obtained at different calcinating temperatures (200 - 500ºC) and they were investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The films were investigated as pH sensors (range 2-11).
doi_str_mv 10.1590/S0103-97332006000300066
format article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0103_97332006000300066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0103_97332006000300066</scielo_id><sourcerecordid>S0103_97332006000300066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-94516a946166281be4f98c907ee41de5b61279a94486d58f32240cb35a37db1f3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxnNQsFafwbzA1sn_zVGKWqHQQ_UcsslEttTdkkTQt3e14qV4GL7DzG_m-4aQGwYLpizcboGBaKwRggNoABBTaX1GZn-NC3JZyg6AK5BiRsx22HCKHxWHiJG--oo09biPDaaEodKa_VD6UsdMfaGHFS04lDFfkfPk9wWvf3VOXh7un5erZr15fFrerZsgpKqNlYppb6VmWvOWdSiTbYMFgyhZRNVpxo2dBmSro2qT4FxC6ITywsSOJTEni-PeEiZXo9uN73mYDrqfqO4k6gSYIxDyWErG5A65f_P50zFw30_6l_wC04lXng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SnO2 extended gate field-effect transistor as pH sensor</title><source>SciELO</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Batista, P. D. ; Mulato, M. ; Graeff, C. F. de O. ; Fernandez, F. J. R. ; Marques, F. das C.</creator><creatorcontrib>Batista, P. D. ; Mulato, M. ; Graeff, C. F. de O. ; Fernandez, F. J. R. ; Marques, F. das C.</creatorcontrib><description>Extended gate field-effect transistor (EGFET) is a device composed of a conventional ion-sensitive electrode and a MOSFET device, which can be applied to the measurement of ion content in a solution. This structure has a lot of advantages as compared to the Ion- Sensitive Field Effect Transistor (ISFET). In this work, we constructed an EGFET by connecting the sensing structure fabricated with SnO2 to a commercial MOSFET (CD4007UB). From the numerical simulation of site binding model it is possible to determine some of the desirable characteristics of the films. We investigate and compare SnO2 films prepared using both the Sol-gel and the Pechini methods. The aim is an amorphous material for the EGFET. The SnO2 powder was obtained at different calcinating temperatures (200 - 500ºC) and they were investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The films were investigated as pH sensors (range 2-11).</description><identifier>ISSN: 0103-9733</identifier><identifier>ISSN: 1678-4448</identifier><identifier>DOI: 10.1590/S0103-97332006000300066</identifier><language>eng</language><publisher>Sociedade Brasileira de Física</publisher><subject>PHYSICS, MULTIDISCIPLINARY</subject><ispartof>Brazilian journal of physics, 2006-06, Vol.36 (2a), p.478-481</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-94516a946166281be4f98c907ee41de5b61279a94486d58f32240cb35a37db1f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,24148,27922,27923</link.rule.ids></links><search><creatorcontrib>Batista, P. D.</creatorcontrib><creatorcontrib>Mulato, M.</creatorcontrib><creatorcontrib>Graeff, C. F. de O.</creatorcontrib><creatorcontrib>Fernandez, F. J. R.</creatorcontrib><creatorcontrib>Marques, F. das C.</creatorcontrib><title>SnO2 extended gate field-effect transistor as pH sensor</title><title>Brazilian journal of physics</title><addtitle>Braz. J. Phys</addtitle><description>Extended gate field-effect transistor (EGFET) is a device composed of a conventional ion-sensitive electrode and a MOSFET device, which can be applied to the measurement of ion content in a solution. This structure has a lot of advantages as compared to the Ion- Sensitive Field Effect Transistor (ISFET). In this work, we constructed an EGFET by connecting the sensing structure fabricated with SnO2 to a commercial MOSFET (CD4007UB). From the numerical simulation of site binding model it is possible to determine some of the desirable characteristics of the films. We investigate and compare SnO2 films prepared using both the Sol-gel and the Pechini methods. The aim is an amorphous material for the EGFET. The SnO2 powder was obtained at different calcinating temperatures (200 - 500ºC) and they were investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The films were investigated as pH sensors (range 2-11).</description><subject>PHYSICS, MULTIDISCIPLINARY</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxnNQsFafwbzA1sn_zVGKWqHQQ_UcsslEttTdkkTQt3e14qV4GL7DzG_m-4aQGwYLpizcboGBaKwRggNoABBTaX1GZn-NC3JZyg6AK5BiRsx22HCKHxWHiJG--oo09biPDaaEodKa_VD6UsdMfaGHFS04lDFfkfPk9wWvf3VOXh7un5erZr15fFrerZsgpKqNlYppb6VmWvOWdSiTbYMFgyhZRNVpxo2dBmSro2qT4FxC6ITywsSOJTEni-PeEiZXo9uN73mYDrqfqO4k6gSYIxDyWErG5A65f_P50zFw30_6l_wC04lXng</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Batista, P. D.</creator><creator>Mulato, M.</creator><creator>Graeff, C. F. de O.</creator><creator>Fernandez, F. J. R.</creator><creator>Marques, F. das C.</creator><general>Sociedade Brasileira de Física</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20060601</creationdate><title>SnO2 extended gate field-effect transistor as pH sensor</title><author>Batista, P. D. ; Mulato, M. ; Graeff, C. F. de O. ; Fernandez, F. J. R. ; Marques, F. das C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-94516a946166281be4f98c907ee41de5b61279a94486d58f32240cb35a37db1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>PHYSICS, MULTIDISCIPLINARY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batista, P. D.</creatorcontrib><creatorcontrib>Mulato, M.</creatorcontrib><creatorcontrib>Graeff, C. F. de O.</creatorcontrib><creatorcontrib>Fernandez, F. J. R.</creatorcontrib><creatorcontrib>Marques, F. das C.</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batista, P. D.</au><au>Mulato, M.</au><au>Graeff, C. F. de O.</au><au>Fernandez, F. J. R.</au><au>Marques, F. das C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnO2 extended gate field-effect transistor as pH sensor</atitle><jtitle>Brazilian journal of physics</jtitle><addtitle>Braz. J. Phys</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>36</volume><issue>2a</issue><spage>478</spage><epage>481</epage><pages>478-481</pages><issn>0103-9733</issn><issn>1678-4448</issn><abstract>Extended gate field-effect transistor (EGFET) is a device composed of a conventional ion-sensitive electrode and a MOSFET device, which can be applied to the measurement of ion content in a solution. This structure has a lot of advantages as compared to the Ion- Sensitive Field Effect Transistor (ISFET). In this work, we constructed an EGFET by connecting the sensing structure fabricated with SnO2 to a commercial MOSFET (CD4007UB). From the numerical simulation of site binding model it is possible to determine some of the desirable characteristics of the films. We investigate and compare SnO2 films prepared using both the Sol-gel and the Pechini methods. The aim is an amorphous material for the EGFET. The SnO2 powder was obtained at different calcinating temperatures (200 - 500ºC) and they were investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The films were investigated as pH sensors (range 2-11).</abstract><pub>Sociedade Brasileira de Física</pub><doi>10.1590/S0103-97332006000300066</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0103-9733
ispartof Brazilian journal of physics, 2006-06, Vol.36 (2a), p.478-481
issn 0103-9733
1678-4448
language eng
recordid cdi_scielo_journals_S0103_97332006000300066
source SciELO; EZB-FREE-00999 freely available EZB journals
subjects PHYSICS, MULTIDISCIPLINARY
title SnO2 extended gate field-effect transistor as pH sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnO2%20extended%20gate%20field-effect%20transistor%20as%20pH%20sensor&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Batista,%20P.%20D.&rft.date=2006-06-01&rft.volume=36&rft.issue=2a&rft.spage=478&rft.epage=481&rft.pages=478-481&rft.issn=0103-9733&rft_id=info:doi/10.1590/S0103-97332006000300066&rft_dat=%3Cscielo_cross%3ES0103_97332006000300066%3C/scielo_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-94516a946166281be4f98c907ee41de5b61279a94486d58f32240cb35a37db1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0103_97332006000300066&rfr_iscdi=true