Loading…

A new formulation for the dielectric tensor for magnetized dusty plasmas with variable charge on the dust particles

A kinetic approach to the problem of wave propagation in dusty plasmas, which takes into account the variation of the charge of the dust particles due to inelastic collisions with electrons and ions, is utilized as a starting point for the development of a new formulation, which writes the component...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of physics 2008-09, Vol.38 (3a), p.297-322
Main Authors: Ziebell, L. F., Schneider, R. S., Juli, M. C. de, Gaelzer, R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A kinetic approach to the problem of wave propagation in dusty plasmas, which takes into account the variation of the charge of the dust particles due to inelastic collisions with electrons and ions, is utilized as a starting point for the development of a new formulation, which writes the components of the dielectric tensor in terms of a finite and an infinite series, containing all effects of harmonics and Larmor radius. The formulation is quite general and valid for the whole range of frequencies above the plasma frequency of the dust particles, which were assumed motionless. The formulation is employed to the study of electrostatic waves propagating along the direction of the ambient magnetic field, in the case for which ions and electrons are described by Maxwellian distributions. The results obtained in a numerical analysis corroborate previous analysis, about the important role played by the inelastic collisions between electrons and ions and the dust particles, particularly on the imaginary part of the dispersion relation. The numerical analysis also show that additional terms in the components of the dielectric tensor, which are entirely due these inelastic collisions, play a very minor role in the case of electrostatic waves, under the conditions considered in the present analysis.
ISSN:0103-9733
1678-4448
0103-9733
DOI:10.1590/S0103-97332008000300002