Loading…
A kinetic model for the first stage of pygas upgrading
Pyrolysis gasoline - PYGAS - is an intermediate boiling product of naphtha steam cracking with a high octane number and high aromatic/unsaturated contents. Due to stabilization concerns, PYGAS must be hydrotreated in two stages. The first stage uses a mild trickle-bed conversion for removing extreme...
Saved in:
Published in: | Brazilian journal of chemical engineering 2007-03, Vol.24 (1), p.119-133 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pyrolysis gasoline - PYGAS - is an intermediate boiling product of naphtha steam cracking with a high octane number and high aromatic/unsaturated contents. Due to stabilization concerns, PYGAS must be hydrotreated in two stages. The first stage uses a mild trickle-bed conversion for removing extremely reactive species (styrene, dienes and olefins) prior to the more severe second stage where sulfured and remaining olefins are hydrogenated in gas phase. This work addresses the reaction network and two-phase kinetic model for the first stage of PYGAS upgrading. Nonlinear estimation was used for model tuning with kinetic data obtained in bench-scale trickle-bed hydrogenation with a commercial Pd/Al2O3 catalyst. On-line sampling experiments were designed to study the influence of variables - temperature and spatial velocity - on the conversion of styrene, dienes and olefins. |
---|---|
ISSN: | 0104-6632 1678-4383 0104-6632 |
DOI: | 10.1590/S0104-66322007000100011 |