Loading…

ARTIFICIAL NEURAL NETWORKS APPLIED IN FOREST BIOMETRICS AND MODELING: STATE OF THE ART (JANUARY/2007 TO JULY/2018)

ABSTRACT Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artifi...

Full description

Saved in:
Bibliographic Details
Published in:CERNE 2019-06, Vol.25 (2), p.140-155
Main Authors: CHIARELLO, FLÁVIO, STEINER, MARIA TERESINHA ARNS, OLIVEIRA, EDILSON BATISTA DE, ARCE, JÚLIO EDUARDO, FERREIRA, JÚLIO CÉSAR
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93
cites cdi_FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93
container_end_page 155
container_issue 2
container_start_page 140
container_title CERNE
container_volume 25
creator CHIARELLO, FLÁVIO
STEINER, MARIA TERESINHA ARNS
OLIVEIRA, EDILSON BATISTA DE
ARCE, JÚLIO EDUARDO
FERREIRA, JÚLIO CÉSAR
description ABSTRACT Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type - classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.
doi_str_mv 10.1590/01047760201925022626
format article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0104_77602019000200140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0104_77602019000200140</scielo_id><sourcerecordid>S0104_77602019000200140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93</originalsourceid><addsrcrecordid>eNptkMtOwzAURC0EEqXwByy8hEXa60fsml1IndYlTarEEWIV5VWpVaEogQV_T0Jhx2o0ujNzpYPQLYEJcRVMgQCXUgAFoqgLlAoqztCIMiIdwTg9R6Mh4gyZS3TVdXsATogiI9R6iTWB8Y0X4khnyY_Y5zh5SrG32YRGz7GJcBAnOrX40cRrbRPj98dojtfxXIcmWjzg1HpW4zjAdqlxP4nvVl6UecnLlAJIbGO8ysLBkNn9NbrYFoeuufnVMcoCbf2lE8YL43uhUzEmPpyiJlsGslFNJSipaMmBl1IVZc3pTFClasFnZe8YI66sK9XIUsoZa6hQrqgVG6PJaberds3hmO-Pn-1b_zBPBxj5HzCAXoBw6Av8VKjaY9e1zTZ_b3evRfuVE8gH0Pl_oNk3eU5iZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ARTIFICIAL NEURAL NETWORKS APPLIED IN FOREST BIOMETRICS AND MODELING: STATE OF THE ART (JANUARY/2007 TO JULY/2018)</title><source>SciELO</source><creator>CHIARELLO, FLÁVIO ; STEINER, MARIA TERESINHA ARNS ; OLIVEIRA, EDILSON BATISTA DE ; ARCE, JÚLIO EDUARDO ; FERREIRA, JÚLIO CÉSAR</creator><creatorcontrib>CHIARELLO, FLÁVIO ; STEINER, MARIA TERESINHA ARNS ; OLIVEIRA, EDILSON BATISTA DE ; ARCE, JÚLIO EDUARDO ; FERREIRA, JÚLIO CÉSAR</creatorcontrib><description>ABSTRACT Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type - classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.</description><identifier>ISSN: 0104-7760</identifier><identifier>ISSN: 2317-6342</identifier><identifier>EISSN: 2317-6342</identifier><identifier>DOI: 10.1590/01047760201925022626</identifier><language>eng</language><publisher>UFLA - Universidade Federal de Lavras</publisher><subject>FORESTRY</subject><ispartof>CERNE, 2019-06, Vol.25 (2), p.140-155</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93</citedby><cites>FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93</cites><orcidid>0000-0002-8712-7957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,24150,27924,27925</link.rule.ids></links><search><creatorcontrib>CHIARELLO, FLÁVIO</creatorcontrib><creatorcontrib>STEINER, MARIA TERESINHA ARNS</creatorcontrib><creatorcontrib>OLIVEIRA, EDILSON BATISTA DE</creatorcontrib><creatorcontrib>ARCE, JÚLIO EDUARDO</creatorcontrib><creatorcontrib>FERREIRA, JÚLIO CÉSAR</creatorcontrib><title>ARTIFICIAL NEURAL NETWORKS APPLIED IN FOREST BIOMETRICS AND MODELING: STATE OF THE ART (JANUARY/2007 TO JULY/2018)</title><title>CERNE</title><addtitle>CERNE</addtitle><description>ABSTRACT Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type - classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.</description><subject>FORESTRY</subject><issn>0104-7760</issn><issn>2317-6342</issn><issn>2317-6342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAURC0EEqXwByy8hEXa60fsml1IndYlTarEEWIV5VWpVaEogQV_T0Jhx2o0ujNzpYPQLYEJcRVMgQCXUgAFoqgLlAoqztCIMiIdwTg9R6Mh4gyZS3TVdXsATogiI9R6iTWB8Y0X4khnyY_Y5zh5SrG32YRGz7GJcBAnOrX40cRrbRPj98dojtfxXIcmWjzg1HpW4zjAdqlxP4nvVl6UecnLlAJIbGO8ysLBkNn9NbrYFoeuufnVMcoCbf2lE8YL43uhUzEmPpyiJlsGslFNJSipaMmBl1IVZc3pTFClasFnZe8YI66sK9XIUsoZa6hQrqgVG6PJaberds3hmO-Pn-1b_zBPBxj5HzCAXoBw6Av8VKjaY9e1zTZ_b3evRfuVE8gH0Pl_oNk3eU5iZA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>CHIARELLO, FLÁVIO</creator><creator>STEINER, MARIA TERESINHA ARNS</creator><creator>OLIVEIRA, EDILSON BATISTA DE</creator><creator>ARCE, JÚLIO EDUARDO</creator><creator>FERREIRA, JÚLIO CÉSAR</creator><general>UFLA - Universidade Federal de Lavras</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0002-8712-7957</orcidid></search><sort><creationdate>20190601</creationdate><title>ARTIFICIAL NEURAL NETWORKS APPLIED IN FOREST BIOMETRICS AND MODELING: STATE OF THE ART (JANUARY/2007 TO JULY/2018)</title><author>CHIARELLO, FLÁVIO ; STEINER, MARIA TERESINHA ARNS ; OLIVEIRA, EDILSON BATISTA DE ; ARCE, JÚLIO EDUARDO ; FERREIRA, JÚLIO CÉSAR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>FORESTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHIARELLO, FLÁVIO</creatorcontrib><creatorcontrib>STEINER, MARIA TERESINHA ARNS</creatorcontrib><creatorcontrib>OLIVEIRA, EDILSON BATISTA DE</creatorcontrib><creatorcontrib>ARCE, JÚLIO EDUARDO</creatorcontrib><creatorcontrib>FERREIRA, JÚLIO CÉSAR</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>CERNE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHIARELLO, FLÁVIO</au><au>STEINER, MARIA TERESINHA ARNS</au><au>OLIVEIRA, EDILSON BATISTA DE</au><au>ARCE, JÚLIO EDUARDO</au><au>FERREIRA, JÚLIO CÉSAR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARTIFICIAL NEURAL NETWORKS APPLIED IN FOREST BIOMETRICS AND MODELING: STATE OF THE ART (JANUARY/2007 TO JULY/2018)</atitle><jtitle>CERNE</jtitle><addtitle>CERNE</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>25</volume><issue>2</issue><spage>140</spage><epage>155</epage><pages>140-155</pages><issn>0104-7760</issn><issn>2317-6342</issn><eissn>2317-6342</eissn><abstract>ABSTRACT Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type - classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.</abstract><pub>UFLA - Universidade Federal de Lavras</pub><doi>10.1590/01047760201925022626</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8712-7957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0104-7760
ispartof CERNE, 2019-06, Vol.25 (2), p.140-155
issn 0104-7760
2317-6342
2317-6342
language eng
recordid cdi_scielo_journals_S0104_77602019000200140
source SciELO
subjects FORESTRY
title ARTIFICIAL NEURAL NETWORKS APPLIED IN FOREST BIOMETRICS AND MODELING: STATE OF THE ART (JANUARY/2007 TO JULY/2018)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARTIFICIAL%20NEURAL%20NETWORKS%20APPLIED%20IN%20FOREST%20BIOMETRICS%20AND%20MODELING:%20STATE%20OF%20THE%20ART%20(JANUARY/2007%20TO%20JULY/2018)&rft.jtitle=CERNE&rft.au=CHIARELLO,%20FL%C3%81VIO&rft.date=2019-06-01&rft.volume=25&rft.issue=2&rft.spage=140&rft.epage=155&rft.pages=140-155&rft.issn=0104-7760&rft.eissn=2317-6342&rft_id=info:doi/10.1590/01047760201925022626&rft_dat=%3Cscielo_cross%3ES0104_77602019000200140%3C/scielo_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ad1f307e9ec621c2b404b79abd4286299d648bbd433157dc9e7b7783e26956d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0104_77602019000200140&rfr_iscdi=true