Loading…
Cold tolerance evaluation of temperate rice (Oryza sativa L. ssp. japonica) genotypes at seedling stage
Cold is the most important abiotic factor that affect rice yield in Chile, which can alter the phenology and physiology of the rice at seedling stage. With the aim to increase the accuracy for cold tolerance evaluation in Chilean Rice Breeding Program of the Instituto de Investigaciones Agropecuaria...
Saved in:
Published in: | Gayana. Botánica. 2015-06, Vol.72 (1), p.1-13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cold is the most important abiotic factor that affect rice yield in Chile, which can alter the phenology and physiology of the rice at seedling stage. With the aim to increase the accuracy for cold tolerance evaluation in Chilean Rice Breeding Program of the Instituto de Investigaciones Agropecuarias (INIA), 109 experimental lines were evaluated to cold tolerance using morphological and physiological traits, at seedling stage. Cold treatment was achieved by placing seedlings at 5 °C on dark for 72 h and evaluations were made after seven days recovery. Leaf chlorosis based on the standard evaluation system scale (SES), Chlorophyll content (Chl), Malondialdehyde concentration (MDA) and maximum quantum yield of Photosystem II (Fv/Fm) were evaluated. Best linear unbiased prediction (BLUP) for all traits and multivariate analysis were made in order to determine the cold tolerant genotypes. Variability in cold tolerance among experimental lines was described by principal component and cluster analysis of BLUPs for all traits. The broad sense heritability calculated for SES scale was the highest (0.54), while for Fv/Fm was the lowest (0.10). Genotypes with high cold tolerance were Quila 242002 and Quila 241304, while more susceptible genotypes were Quila 64117, Quila 260312 and Quila 241607. The results suggest that the BLUPs and multivariate analysis allow adequate clustering of rice genotypes according to the degree of their cold tolerance. Finally, we suggest that SES scale and Chl content were the most suitable traits to evaluate cold tolerance for the rice genotypes studied and for the conditions evaluated. |
---|---|
ISSN: | 0717-6643 0717-6643 |
DOI: | 10.4067/S0717-66432015000100001 |