Loading…

Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees

This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of t...

Full description

Saved in:
Bibliographic Details
Published in:Bosque (Valdivia, Chile) Chile), 2020-12, Vol.41 (3), p.353-364
Main Authors: Dantas, Daniel, Rodrigues Pinto, Luiz Otávio, de Castro Nunes Santos Terra, Marcela, Calegario, Natalino, Romarco de Oliveira, Marcio Leles
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-ccd26fc69221b5f4e772912acc01abda3ac128df11f901f89436a8debbc941e03
cites
container_end_page 364
container_issue 3
container_start_page 353
container_title Bosque (Valdivia, Chile)
container_volume 41
creator Dantas, Daniel
Rodrigues Pinto, Luiz Otávio
de Castro Nunes Santos Terra, Marcela
Calegario, Natalino
Romarco de Oliveira, Marcio Leles
description This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.
doi_str_mv 10.4067/S0717-92002020000300353
format article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0717_92002020000300353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0717_92002020000300353</scielo_id><sourcerecordid>S0717_92002020000300353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-ccd26fc69221b5f4e772912acc01abda3ac128df11f901f89436a8debbc941e03</originalsourceid><addsrcrecordid>eNp1kNtqxCAQhqW00O22z1BfIFs1JiaXZekJFgo9XIsx48YlG4OaQt6-breUQqk6zI8z34g_QteUrDgpxc0rEVRkNSOEpZ1Wnk6Rn6DFT-H0lz5HFyHsSCKJ4AtkXqCddLRuwM7goPZjb4cttkOEIdg4J4WN8xBiUh8wROctBBwdTld2ryLg2KVwUfW4A7vt4mEQTFr18xin1OoBwiU6M6oPcPWdl-j9_u5t_Zhtnh-e1rebTOe8iJnWLSuNLmvGaFMYDkKwmjKlNaGqaVWuNGVVayg1NaGmqnleqqqFptE1p0DyJVod5wZtoXdy5yY_pAfll0vyj0sJEEdAexeCByNHn77lZ0mJPPj7L_kJAFFt-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees</title><source>SciELO</source><creator>Dantas, Daniel ; Rodrigues Pinto, Luiz Otávio ; de Castro Nunes Santos Terra, Marcela ; Calegario, Natalino ; Romarco de Oliveira, Marcio Leles</creator><creatorcontrib>Dantas, Daniel ; Rodrigues Pinto, Luiz Otávio ; de Castro Nunes Santos Terra, Marcela ; Calegario, Natalino ; Romarco de Oliveira, Marcio Leles</creatorcontrib><description>This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.</description><identifier>ISSN: 0717-9200</identifier><identifier>EISSN: 0717-9200</identifier><identifier>DOI: 10.4067/S0717-92002020000300353</identifier><language>eng</language><publisher>Universidad Austral de Chile, Facultad de Ciencias Forestales</publisher><subject>FORESTRY</subject><ispartof>Bosque (Valdivia, Chile), 2020-12, Vol.41 (3), p.353-364</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-ccd26fc69221b5f4e772912acc01abda3ac128df11f901f89436a8debbc941e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,24132,27905,27906</link.rule.ids></links><search><creatorcontrib>Dantas, Daniel</creatorcontrib><creatorcontrib>Rodrigues Pinto, Luiz Otávio</creatorcontrib><creatorcontrib>de Castro Nunes Santos Terra, Marcela</creatorcontrib><creatorcontrib>Calegario, Natalino</creatorcontrib><creatorcontrib>Romarco de Oliveira, Marcio Leles</creatorcontrib><title>Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees</title><title>Bosque (Valdivia, Chile)</title><addtitle>Bosque (Valdivia)</addtitle><description>This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.</description><subject>FORESTRY</subject><issn>0717-9200</issn><issn>0717-9200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNtqxCAQhqW00O22z1BfIFs1JiaXZekJFgo9XIsx48YlG4OaQt6-breUQqk6zI8z34g_QteUrDgpxc0rEVRkNSOEpZ1Wnk6Rn6DFT-H0lz5HFyHsSCKJ4AtkXqCddLRuwM7goPZjb4cttkOEIdg4J4WN8xBiUh8wROctBBwdTld2ryLg2KVwUfW4A7vt4mEQTFr18xin1OoBwiU6M6oPcPWdl-j9_u5t_Zhtnh-e1rebTOe8iJnWLSuNLmvGaFMYDkKwmjKlNaGqaVWuNGVVayg1NaGmqnleqqqFptE1p0DyJVod5wZtoXdy5yY_pAfll0vyj0sJEEdAexeCByNHn77lZ0mJPPj7L_kJAFFt-w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Dantas, Daniel</creator><creator>Rodrigues Pinto, Luiz Otávio</creator><creator>de Castro Nunes Santos Terra, Marcela</creator><creator>Calegario, Natalino</creator><creator>Romarco de Oliveira, Marcio Leles</creator><general>Universidad Austral de Chile, Facultad de Ciencias Forestales</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20201201</creationdate><title>Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees</title><author>Dantas, Daniel ; Rodrigues Pinto, Luiz Otávio ; de Castro Nunes Santos Terra, Marcela ; Calegario, Natalino ; Romarco de Oliveira, Marcio Leles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-ccd26fc69221b5f4e772912acc01abda3ac128df11f901f89436a8debbc941e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>FORESTRY</topic><toplevel>online_resources</toplevel><creatorcontrib>Dantas, Daniel</creatorcontrib><creatorcontrib>Rodrigues Pinto, Luiz Otávio</creatorcontrib><creatorcontrib>de Castro Nunes Santos Terra, Marcela</creatorcontrib><creatorcontrib>Calegario, Natalino</creatorcontrib><creatorcontrib>Romarco de Oliveira, Marcio Leles</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Bosque (Valdivia, Chile)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dantas, Daniel</au><au>Rodrigues Pinto, Luiz Otávio</au><au>de Castro Nunes Santos Terra, Marcela</au><au>Calegario, Natalino</au><au>Romarco de Oliveira, Marcio Leles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees</atitle><jtitle>Bosque (Valdivia, Chile)</jtitle><addtitle>Bosque (Valdivia)</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>41</volume><issue>3</issue><spage>353</spage><epage>364</epage><pages>353-364</pages><issn>0717-9200</issn><eissn>0717-9200</eissn><abstract>This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.</abstract><pub>Universidad Austral de Chile, Facultad de Ciencias Forestales</pub><doi>10.4067/S0717-92002020000300353</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0717-9200
ispartof Bosque (Valdivia, Chile), 2020-12, Vol.41 (3), p.353-364
issn 0717-9200
0717-9200
language eng
recordid cdi_scielo_journals_S0717_92002020000300353
source SciELO
subjects FORESTRY
title Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20sampling%20intensity%20in%20forest%20inventories%20to%20estimate%20the%20total%20height%20of%20eucalyptus%20trees&rft.jtitle=Bosque%20(Valdivia,%20Chile)&rft.au=Dantas,%20Daniel&rft.date=2020-12-01&rft.volume=41&rft.issue=3&rft.spage=353&rft.epage=364&rft.pages=353-364&rft.issn=0717-9200&rft.eissn=0717-9200&rft_id=info:doi/10.4067/S0717-92002020000300353&rft_dat=%3Cscielo_cross%3ES0717_92002020000300353%3C/scielo_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-ccd26fc69221b5f4e772912acc01abda3ac128df11f901f89436a8debbc941e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0717_92002020000300353&rfr_iscdi=true