Loading…
Immunohistochemical Study of Amelogenin and Lysosome-Associate Membrane Proteins (LAMPs) in Cartilage
Amelogenin is one of the enamel matrix proteins secreted by ameloblasts during enamel formation in tooth development. Recent studies showed that the amelogenin is expressed in chondrocyte. Lysosome-associated membrane proteins (LAMPs) have been identified as binding partner proteins to amelogenin an...
Saved in:
Published in: | International journal of morphology 2014-06, Vol.32 (2), p.618-626 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Amelogenin is one of the enamel matrix proteins secreted by ameloblasts during enamel formation in tooth development. Recent studies showed that the amelogenin is expressed in chondrocyte. Lysosome-associated membrane proteins (LAMPs) have been identified as binding partner proteins to amelogenin and it has been suggested they act as signaling receptors of amelogenin. The purpose of this study is to clarify the localization of amelogenin and LAMPs in growth plate cartilage and cartilaginous nodules in micromass culture. Mouse knee joints including tibia growth plate at 4 weeks old and micromass cultures of limb bud mesenchymal cells after 2 weeks were fixed in paraformaldehyde, routinely processed, sections were cut and immunostained with amelogenin, collagen type II and type X, LAMP-1 and -3. The positive immunoreaction of amelogenin was observed both in proliferation and hypertrophic zone cartilage of growth plate after enzymatic pretreatment in immunostaining. Furthermore, cartilaginous nodules in micromass culture were immunopositive to amelogenin. The chondrocytes in the proliferation zone of the growth plate were immunopositive to LAMP-1 but weakly stained in the chondrocytes of hypertrophic zone. These observations indicate that amelogenin may be present in cartilage matrix produced in vivo and in vitro and amelogenin may involve cartilage formation through the LAMP-1 signaling pathway. |
---|---|
ISSN: | 0717-9502 0717-9502 |
DOI: | 10.4067/S0717-95022014000200040 |