Loading…

Comparison of mean shear wave velocity of the top 30 m using downhole, MASW and bender elements methods

Multichannel Analysis of Surface Waves MASW tests were performed in different seismic stations where boring information and downhole tests were available. Active MASW tests were performed using 12 geophones of 4.5 Hz of frequency repeating 5 tests in each location. From the readings, dispersion curv...

Full description

Saved in:
Bibliographic Details
Published in:Obras y proyectos 2016-12 (20), p.6-15
Main Authors: Moffat, Ricardo, Correia, Nicolle, Pastén, Cesar
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multichannel Analysis of Surface Waves MASW tests were performed in different seismic stations where boring information and downhole tests were available. Active MASW tests were performed using 12 geophones of 4.5 Hz of frequency repeating 5 tests in each location. From the readings, dispersion curves were obtained using a f-k analysis with the software Geopsy. The shear wave velocity V S profiles were obtained by inverting the deduced dispersion curves. Downhole tests were analyzed using the direct approach in four stations (Maipú, Peñalolen, Casablanca and Melipilla), and using existing Vs results for Llolleo site. V S profiles obtained from MASW and downhole tests are compared and the average shear wave velocity of the top 30 m (V S30) calculated for each station. V S profiles obtained from downhole and MAS Wactive tests are similar up to 30 m. Therefore, a good testing methodology and analysis of the MASW data allows reliable results and the same seismic classification of the soil. The major differences were found where there is a large impedance of two layers of soils such as it was found in Melipilla site.
ISSN:0718-2813
0718-2813
DOI:10.4067/S0718-28132016000200001