Loading…

Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance

This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidat...

Full description

Saved in:
Bibliographic Details
Published in:Ingeniare : Revista Chilena de Ingenieria 2020-09, Vol.28 (3), p.362-372
Main Authors: Muñoz-Mizuno, Andrea, Cely-Bautista, Mercedes, Jaramillo-Colpas, Javier, Hincapie, Duberney, Calderón-Hernández, José Wilmar
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013
cites
container_end_page 372
container_issue 3
container_start_page 362
container_title Ingeniare : Revista Chilena de Ingenieria
container_volume 28
creator Muñoz-Mizuno, Andrea
Cely-Bautista, Mercedes
Jaramillo-Colpas, Javier
Hincapie, Duberney
Calderón-Hernández, José Wilmar
description This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.
doi_str_mv 10.4067/S0718-33052020000300362
format article
fullrecord <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S0718_33052020000300362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0718_33052020000300362</scielo_id><sourcerecordid>2479815229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4GA5635mOzmz1KqVYo9GA9eVjS7ISmtElNsqD_3qwVFcRhYIaZ994wD6FrSiYlqerbJ1JTWXBOBCOM5OA5K3aCRt-L01_9ObqIcUuIaCrBRuhlZgzohL3DaQNhr3bYv9lOJZsn1uGVXTLslPMxhV6nPkAcsMNko0LnIEasXIe1D8HHgZQRNiblNFyiM6N2Ea6-6hg9389W03mxWD48Tu8WhWZSsgJ4zUVHS6G5ZNSYtaZ11bA1CAXCcCmEqExJoeRADRGUCNNJUMPDrKKE8jGaHHWjtrDz7db3weWD7ac17R9rMuHmSDgE_9pDTD8UVtaNpFm5yaj6iNL5sxjAtIdg9yq8t5S0g_X_6n8ApUVzgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479815229</pqid></control><display><type>article</type><title>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</title><source>SciELO Chile</source><source>Publicly Available Content Database</source><creator>Muñoz-Mizuno, Andrea ; Cely-Bautista, Mercedes ; Jaramillo-Colpas, Javier ; Hincapie, Duberney ; Calderón-Hernández, José Wilmar</creator><creatorcontrib>Muñoz-Mizuno, Andrea ; Cely-Bautista, Mercedes ; Jaramillo-Colpas, Javier ; Hincapie, Duberney ; Calderón-Hernández, José Wilmar</creatorcontrib><description>This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.</description><identifier>ISSN: 0718-3305</identifier><identifier>ISSN: 0718-3291</identifier><identifier>EISSN: 0718-3305</identifier><identifier>DOI: 10.4067/S0718-33052020000300362</identifier><language>eng</language><publisher>Arica: Universidad de Tarapacá</publisher><subject>Anodizing ; Biocompatibility ; Corrosion effects ; Corrosion resistance ; Electrochemical impedance spectroscopy ; Electrodes ; Electrolytes ; ENGINEERING, MULTIDISCIPLINARY ; Investigations ; Mechanical properties ; Morphology ; Nanohardness ; Nanoindentation ; Nanostructure ; Oxidation resistance ; Porosity ; Power supply ; Scanning electron microscopy ; Software ; Spectrum analysis ; Substrates ; Surface properties ; Titanium alloys ; Titanium base alloys ; Titanium dioxide ; Transplants &amp; implants</subject><ispartof>Ingeniare : Revista Chilena de Ingenieria, 2020-09, Vol.28 (3), p.362-372</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2479815229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2479815229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,24151,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Muñoz-Mizuno, Andrea</creatorcontrib><creatorcontrib>Cely-Bautista, Mercedes</creatorcontrib><creatorcontrib>Jaramillo-Colpas, Javier</creatorcontrib><creatorcontrib>Hincapie, Duberney</creatorcontrib><creatorcontrib>Calderón-Hernández, José Wilmar</creatorcontrib><title>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</title><title>Ingeniare : Revista Chilena de Ingenieria</title><addtitle>Ingeniare. Rev. chil. ing</addtitle><description>This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.</description><subject>Anodizing</subject><subject>Biocompatibility</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Nanostructure</subject><subject>Oxidation resistance</subject><subject>Porosity</subject><subject>Power supply</subject><subject>Scanning electron microscopy</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface properties</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><subject>Transplants &amp; implants</subject><issn>0718-3305</issn><issn>0718-3291</issn><issn>0718-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1UE1LAzEQDaJgrf4GA5635mOzmz1KqVYo9GA9eVjS7ISmtElNsqD_3qwVFcRhYIaZ994wD6FrSiYlqerbJ1JTWXBOBCOM5OA5K3aCRt-L01_9ObqIcUuIaCrBRuhlZgzohL3DaQNhr3bYv9lOJZsn1uGVXTLslPMxhV6nPkAcsMNko0LnIEasXIe1D8HHgZQRNiblNFyiM6N2Ea6-6hg9389W03mxWD48Tu8WhWZSsgJ4zUVHS6G5ZNSYtaZ11bA1CAXCcCmEqExJoeRADRGUCNNJUMPDrKKE8jGaHHWjtrDz7db3weWD7ac17R9rMuHmSDgE_9pDTD8UVtaNpFm5yaj6iNL5sxjAtIdg9yq8t5S0g_X_6n8ApUVzgg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Muñoz-Mizuno, Andrea</creator><creator>Cely-Bautista, Mercedes</creator><creator>Jaramillo-Colpas, Javier</creator><creator>Hincapie, Duberney</creator><creator>Calderón-Hernández, José Wilmar</creator><general>Universidad de Tarapacá</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>GPN</scope></search><sort><creationdate>20200901</creationdate><title>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</title><author>Muñoz-Mizuno, Andrea ; Cely-Bautista, Mercedes ; Jaramillo-Colpas, Javier ; Hincapie, Duberney ; Calderón-Hernández, José Wilmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodizing</topic><topic>Biocompatibility</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Nanostructure</topic><topic>Oxidation resistance</topic><topic>Porosity</topic><topic>Power supply</topic><topic>Scanning electron microscopy</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface properties</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Mizuno, Andrea</creatorcontrib><creatorcontrib>Cely-Bautista, Mercedes</creatorcontrib><creatorcontrib>Jaramillo-Colpas, Javier</creatorcontrib><creatorcontrib>Hincapie, Duberney</creatorcontrib><creatorcontrib>Calderón-Hernández, José Wilmar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Latin America &amp; Iberian Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>Ingeniare : Revista Chilena de Ingenieria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Mizuno, Andrea</au><au>Cely-Bautista, Mercedes</au><au>Jaramillo-Colpas, Javier</au><au>Hincapie, Duberney</au><au>Calderón-Hernández, José Wilmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</atitle><jtitle>Ingeniare : Revista Chilena de Ingenieria</jtitle><addtitle>Ingeniare. Rev. chil. ing</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>0718-3305</issn><issn>0718-3291</issn><eissn>0718-3305</eissn><abstract>This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.</abstract><cop>Arica</cop><pub>Universidad de Tarapacá</pub><doi>10.4067/S0718-33052020000300362</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0718-3305
ispartof Ingeniare : Revista Chilena de Ingenieria, 2020-09, Vol.28 (3), p.362-372
issn 0718-3305
0718-3291
0718-3305
language eng
recordid cdi_scielo_journals_S0718_33052020000300362
source SciELO Chile; Publicly Available Content Database
subjects Anodizing
Biocompatibility
Corrosion effects
Corrosion resistance
Electrochemical impedance spectroscopy
Electrodes
Electrolytes
ENGINEERING, MULTIDISCIPLINARY
Investigations
Mechanical properties
Morphology
Nanohardness
Nanoindentation
Nanostructure
Oxidation resistance
Porosity
Power supply
Scanning electron microscopy
Software
Spectrum analysis
Substrates
Surface properties
Titanium alloys
Titanium base alloys
Titanium dioxide
Transplants & implants
title Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance&rft.jtitle=Ingeniare%20:%20Revista%20Chilena%20de%20Ingenieria&rft.au=Mu%C3%B1oz-Mizuno,%20Andrea&rft.date=2020-09-01&rft.volume=28&rft.issue=3&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=0718-3305&rft.eissn=0718-3305&rft_id=info:doi/10.4067/S0718-33052020000300362&rft_dat=%3Cproquest_sciel%3E2479815229%3C/proquest_sciel%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479815229&rft_id=info:pmid/&rft_scielo_id=S0718_33052020000300362&rfr_iscdi=true