Loading…
Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidat...
Saved in:
Published in: | Ingeniare : Revista Chilena de Ingenieria 2020-09, Vol.28 (3), p.362-372 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013 |
---|---|
cites | |
container_end_page | 372 |
container_issue | 3 |
container_start_page | 362 |
container_title | Ingeniare : Revista Chilena de Ingenieria |
container_volume | 28 |
creator | Muñoz-Mizuno, Andrea Cely-Bautista, Mercedes Jaramillo-Colpas, Javier Hincapie, Duberney Calderón-Hernández, José Wilmar |
description | This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures. |
doi_str_mv | 10.4067/S0718-33052020000300362 |
format | article |
fullrecord | <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S0718_33052020000300362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0718_33052020000300362</scielo_id><sourcerecordid>2479815229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4GA5635mOzmz1KqVYo9GA9eVjS7ISmtElNsqD_3qwVFcRhYIaZ994wD6FrSiYlqerbJ1JTWXBOBCOM5OA5K3aCRt-L01_9ObqIcUuIaCrBRuhlZgzohL3DaQNhr3bYv9lOJZsn1uGVXTLslPMxhV6nPkAcsMNko0LnIEasXIe1D8HHgZQRNiblNFyiM6N2Ea6-6hg9389W03mxWD48Tu8WhWZSsgJ4zUVHS6G5ZNSYtaZ11bA1CAXCcCmEqExJoeRADRGUCNNJUMPDrKKE8jGaHHWjtrDz7db3weWD7ac17R9rMuHmSDgE_9pDTD8UVtaNpFm5yaj6iNL5sxjAtIdg9yq8t5S0g_X_6n8ApUVzgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479815229</pqid></control><display><type>article</type><title>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</title><source>SciELO Chile</source><source>Publicly Available Content Database</source><creator>Muñoz-Mizuno, Andrea ; Cely-Bautista, Mercedes ; Jaramillo-Colpas, Javier ; Hincapie, Duberney ; Calderón-Hernández, José Wilmar</creator><creatorcontrib>Muñoz-Mizuno, Andrea ; Cely-Bautista, Mercedes ; Jaramillo-Colpas, Javier ; Hincapie, Duberney ; Calderón-Hernández, José Wilmar</creatorcontrib><description>This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.</description><identifier>ISSN: 0718-3305</identifier><identifier>ISSN: 0718-3291</identifier><identifier>EISSN: 0718-3305</identifier><identifier>DOI: 10.4067/S0718-33052020000300362</identifier><language>eng</language><publisher>Arica: Universidad de Tarapacá</publisher><subject>Anodizing ; Biocompatibility ; Corrosion effects ; Corrosion resistance ; Electrochemical impedance spectroscopy ; Electrodes ; Electrolytes ; ENGINEERING, MULTIDISCIPLINARY ; Investigations ; Mechanical properties ; Morphology ; Nanohardness ; Nanoindentation ; Nanostructure ; Oxidation resistance ; Porosity ; Power supply ; Scanning electron microscopy ; Software ; Spectrum analysis ; Substrates ; Surface properties ; Titanium alloys ; Titanium base alloys ; Titanium dioxide ; Transplants & implants</subject><ispartof>Ingeniare : Revista Chilena de Ingenieria, 2020-09, Vol.28 (3), p.362-372</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2479815229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2479815229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,24151,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Muñoz-Mizuno, Andrea</creatorcontrib><creatorcontrib>Cely-Bautista, Mercedes</creatorcontrib><creatorcontrib>Jaramillo-Colpas, Javier</creatorcontrib><creatorcontrib>Hincapie, Duberney</creatorcontrib><creatorcontrib>Calderón-Hernández, José Wilmar</creatorcontrib><title>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</title><title>Ingeniare : Revista Chilena de Ingenieria</title><addtitle>Ingeniare. Rev. chil. ing</addtitle><description>This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.</description><subject>Anodizing</subject><subject>Biocompatibility</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Nanostructure</subject><subject>Oxidation resistance</subject><subject>Porosity</subject><subject>Power supply</subject><subject>Scanning electron microscopy</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface properties</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><subject>Transplants & implants</subject><issn>0718-3305</issn><issn>0718-3291</issn><issn>0718-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1UE1LAzEQDaJgrf4GA5635mOzmz1KqVYo9GA9eVjS7ISmtElNsqD_3qwVFcRhYIaZ994wD6FrSiYlqerbJ1JTWXBOBCOM5OA5K3aCRt-L01_9ObqIcUuIaCrBRuhlZgzohL3DaQNhr3bYv9lOJZsn1uGVXTLslPMxhV6nPkAcsMNko0LnIEasXIe1D8HHgZQRNiblNFyiM6N2Ea6-6hg9389W03mxWD48Tu8WhWZSsgJ4zUVHS6G5ZNSYtaZ11bA1CAXCcCmEqExJoeRADRGUCNNJUMPDrKKE8jGaHHWjtrDz7db3weWD7ac17R9rMuHmSDgE_9pDTD8UVtaNpFm5yaj6iNL5sxjAtIdg9yq8t5S0g_X_6n8ApUVzgg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Muñoz-Mizuno, Andrea</creator><creator>Cely-Bautista, Mercedes</creator><creator>Jaramillo-Colpas, Javier</creator><creator>Hincapie, Duberney</creator><creator>Calderón-Hernández, José Wilmar</creator><general>Universidad de Tarapacá</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>GPN</scope></search><sort><creationdate>20200901</creationdate><title>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</title><author>Muñoz-Mizuno, Andrea ; Cely-Bautista, Mercedes ; Jaramillo-Colpas, Javier ; Hincapie, Duberney ; Calderón-Hernández, José Wilmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodizing</topic><topic>Biocompatibility</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Nanostructure</topic><topic>Oxidation resistance</topic><topic>Porosity</topic><topic>Power supply</topic><topic>Scanning electron microscopy</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface properties</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Mizuno, Andrea</creatorcontrib><creatorcontrib>Cely-Bautista, Mercedes</creatorcontrib><creatorcontrib>Jaramillo-Colpas, Javier</creatorcontrib><creatorcontrib>Hincapie, Duberney</creatorcontrib><creatorcontrib>Calderón-Hernández, José Wilmar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Latin America & Iberian Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>Ingeniare : Revista Chilena de Ingenieria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Mizuno, Andrea</au><au>Cely-Bautista, Mercedes</au><au>Jaramillo-Colpas, Javier</au><au>Hincapie, Duberney</au><au>Calderón-Hernández, José Wilmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance</atitle><jtitle>Ingeniare : Revista Chilena de Ingenieria</jtitle><addtitle>Ingeniare. Rev. chil. ing</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>0718-3305</issn><issn>0718-3291</issn><eissn>0718-3305</eissn><abstract>This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 °C to 620 °C for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600°C was evidenced, generating significant changes in the mechanical properties of these structures.</abstract><cop>Arica</cop><pub>Universidad de Tarapacá</pub><doi>10.4067/S0718-33052020000300362</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0718-3305 |
ispartof | Ingeniare : Revista Chilena de Ingenieria, 2020-09, Vol.28 (3), p.362-372 |
issn | 0718-3305 0718-3291 0718-3305 |
language | eng |
recordid | cdi_scielo_journals_S0718_33052020000300362 |
source | SciELO Chile; Publicly Available Content Database |
subjects | Anodizing Biocompatibility Corrosion effects Corrosion resistance Electrochemical impedance spectroscopy Electrodes Electrolytes ENGINEERING, MULTIDISCIPLINARY Investigations Mechanical properties Morphology Nanohardness Nanoindentation Nanostructure Oxidation resistance Porosity Power supply Scanning electron microscopy Software Spectrum analysis Substrates Surface properties Titanium alloys Titanium base alloys Titanium dioxide Transplants & implants |
title | Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance&rft.jtitle=Ingeniare%20:%20Revista%20Chilena%20de%20Ingenieria&rft.au=Mu%C3%B1oz-Mizuno,%20Andrea&rft.date=2020-09-01&rft.volume=28&rft.issue=3&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=0718-3305&rft.eissn=0718-3305&rft_id=info:doi/10.4067/S0718-33052020000300362&rft_dat=%3Cproquest_sciel%3E2479815229%3C/proquest_sciel%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2882-e3735d145c3821ffbc17692be5ae5f385556f41e43e1f05105fd8ea3052261013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479815229&rft_id=info:pmid/&rft_scielo_id=S0718_33052020000300362&rfr_iscdi=true |