Loading…
Degradation of pharmaceuticals in sanitary effluent by the combination of oxidation and photo-oxidation processes
Abstract Most conventional sewage treatment systems are not able to fully remove micropollutants found in sewage. Thus, the simultaneous degradation of 11 pharmaceuticals identified in the effluent of a sewage treatment plant in Southern Brazil was herein investigated through advanced oxidation proc...
Saved in:
Published in: | Engenharia Sanitaria e Ambiental 2023, Vol.28 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Most conventional sewage treatment systems are not able to fully remove micropollutants found in sewage. Thus, the simultaneous degradation of 11 pharmaceuticals identified in the effluent of a sewage treatment plant in Southern Brazil was herein investigated through advanced oxidation processes based on ozonation, ultraviolet radiation and hydrogen peroxide. For detection, samples were prepared through solid-phase extraction and pharmaceuticals were identified through ultra-high performance liquid chromatography tandem mass spectrometry. Active ingredients such as ciprofloxacin, oxytetracycline, paracetamol, sulfamethoxazole and trimethoprim had their concentrations increased for degradation analysis purposes. Trials were carried out on a bench at room temperature and neutral pH, with aliquots collected at 7.5 and 15 minutes. Two ozone doses (0.5 and 0.9 mg per mg of dissolved organic carbon), and combinations of the lowest ozone dose with photolysis (254 nm) and with 25 mg.L−1 of hydrogen peroxide were evaluated. Pharmaceuticals mineralization efficiency was assessed in a total organic carbon analyzer. The process combining ozone, hydrogen peroxide and ultraviolet radiation was the most efficient in the degradation of all pharmaceuticals detected in this study, since it enabled reducing oxytetracycline by 89.32%, caffeine by 96.79%, trimethoprim by 97.40%, ciprofloxacin by 97.75%, sulfamethoxazole by 99.79%, paracetamol by 99.96%, and clindamycin, ofloxacin, sulfadiazine, sulfathiazole and tylosin by 100%. This process also recorded the highest mineralization rate (60.52%), fact that confirmed the potential to decrease persistent pharmaceuticals found in conventional sewage treatment systems.
Resumo A maioria dos sistemas convencionais de tratamento de esgoto não é capaz de remover totalmente os micropoluentes presentes no esgoto. Assim, a degradação simultânea de 11 fármacos, detectados no efluente de uma estação de tratamento de esgoto no Sul do Brasil, foi investigada por meio de processos oxidativos avançados baseados em ozonização, radiação ultravioleta e peróxido de hidrogênio. Para detecção, as amostras foram preparadas por extração em fase sólida e os fármacos foram identificados por cromatografia líquida de ultra eficiência acoplada à espectrometria de massa em tandem. Ingredientes ativos como ciprofloxacina, oxitetraciclina, paracetamol, sulfametoxazol e trimetoprima tiveram suas concentrações aumentadas para análise de degradação. Os |
---|---|
ISSN: | 1413-4152 1809-4457 1809-4457 |
DOI: | 10.1590/s1413-415220220025 |