Loading…

Oxygen limitation favors the production of protein with antimicrobial activity in Pseudoalteromonas sp

This study examined the effect of dissolved oxygen concentration on the production of biomass and metabolites with antimicrobial activity of Pseudoalteromonas sp cultured at 0, 150, 250, or 450 revolutions per minute (rev. min(-1)). Dissolved oxygen (D.O) was monitored during the fermentation proces...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of microbiology 2012-07, Vol.43 (3), p.1206-1212
Main Authors: López, Ruth, Monteón, Víctor, Chan, Ernesto, Montejo, Rubí, Chan, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examined the effect of dissolved oxygen concentration on the production of biomass and metabolites with antimicrobial activity of Pseudoalteromonas sp cultured at 0, 150, 250, or 450 revolutions per minute (rev. min(-1)). Dissolved oxygen (D.O) was monitored during the fermentation process, biomass was quantified by dry weight, and antimicrobial activity was assessed using the disk diffusion method. The bacterium Pseudoalteromonas reached similar concentration of biomass under all experimental agitation conditions, whereas antimicrobial activity was detected at 0 and 150 rev. min(-1) registering 0% and 12% of D.O respectively corresponding to microaerophilic conditions. Antibiotic activity was severely diminished when D.O was above 20% of saturation; this corresponded to 250 or 450 rev. min(-1). SDS-PAGE electrophoresis revealed a protein with a molecular weight of approximately 80 kilodaltons (kDa) with antimicrobial activity. Pseudoalteromonas is capable of growing under oxic and microaerophilic conditions but the metabolites with antimicrobial activity are induced under microaerophilic conditions. The current opinion is that Pseudoalteromonas are aerobic organisms; we provide additional information on the amount of dissolved oxygen during the fermentation process and its effect on antimicrobial activity.
ISSN:1517-8382
1678-4405
1678-4405
DOI:10.1590/S1517-83822012000300048