Loading…

New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioproce...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of microbiology 2014, Vol.45 (4), p.1469-1475
Main Authors: da Silva, Debora Danielle Virginio, Cândido, Elisangela de Jesus, de Arruda, Priscila Vaz, da Silva, Silvio Silvério, Felipe, Maria das Graças de Almeida
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH₄)₂SO₄; peptone and yeast extract; (NH₄)₂SO₄, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH₄)₂SO₄, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH₄)₂SO₄ and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH₄)₂SO₄ was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials.
ISSN:1517-8382
1678-4405
1678-4405
DOI:10.1590/S1517-83822014000400043