Loading…
Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory
Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonst...
Saved in:
Published in: | Latin American journal of solids and structures 2020, Vol.17 (8) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | Latin American journal of solids and structures |
container_volume | 17 |
creator | Araujo, Marcelo Vitor Oliveira Lages, Eduardo Nobre Cavalcante, Márcio André Araújo |
description | Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues. |
doi_str_mv | 10.1590/1679-78256053 |
format | article |
fullrecord | <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S1679_78252020000800604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1679_78252020000800604</scielo_id><sourcerecordid>S1679_78252020000800604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</originalsourceid><addsrcrecordid>eNpFUctOwzAQtBBIVNAjd_9Aih3HcXJEFS-pEgfgHNnOunVJ4sh2kNq_4I9xVFT2so_ZmZVmEbqjZEV5Te5pKepMVDkvCWcXaHHuL881FddoGcKepGC04Fws0M96B_oLvHLSt5nxADi60XVue8BujLa3RxmtG7BxHmvXj52Vgwbc2-EfcyZBQ7TDNPUYOhmi1ThEP-k4eQhYyQAtTotxB3gLA3jZ2WMamaQSIft23dTDjDp_uEVXRnYBln_5Bn0-PX6sX7LN2_Pr-mGTaUZ5zApBecUYENqKXOas5aIUOdDKVDQHRoyEQilQRMu2VrVuy1JpqJRUYOo6eXSDVifdoC10rtm7yQ_pYPM-29XM1uUkn72qCClJkQjZiaC9C8GDaUZve-kPDSXN_IPmTJx_wH4BgoF8Dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</title><source>SciELO</source><source>EZB Electronic Journals Library</source><creator>Araujo, Marcelo Vitor Oliveira ; Lages, Eduardo Nobre ; Cavalcante, Márcio André Araújo</creator><creatorcontrib>Araujo, Marcelo Vitor Oliveira ; Lages, Eduardo Nobre ; Cavalcante, Márcio André Araújo</creatorcontrib><description>Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.</description><identifier>ISSN: 1679-7817</identifier><identifier>ISSN: 1679-7825</identifier><identifier>EISSN: 1679-7825</identifier><identifier>DOI: 10.1590/1679-78256053</identifier><language>eng</language><publisher>Associação Brasileira de Ciências Mecânicas</publisher><subject>ENGINEERING, CIVIL ; ENGINEERING, MECHANICAL ; MECHANICS</subject><ispartof>Latin American journal of solids and structures, 2020, Vol.17 (8)</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</citedby><cites>FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</cites><orcidid>0000-0002-4759-4374 ; 0000-0001-6704-4057 ; 0000-0002-8317-8714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,24131,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Araujo, Marcelo Vitor Oliveira</creatorcontrib><creatorcontrib>Lages, Eduardo Nobre</creatorcontrib><creatorcontrib>Cavalcante, Márcio André Araújo</creatorcontrib><title>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</title><title>Latin American journal of solids and structures</title><addtitle>Lat. Am. j. solids struct</addtitle><description>Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.</description><subject>ENGINEERING, CIVIL</subject><subject>ENGINEERING, MECHANICAL</subject><subject>MECHANICS</subject><issn>1679-7817</issn><issn>1679-7825</issn><issn>1679-7825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFUctOwzAQtBBIVNAjd_9Aih3HcXJEFS-pEgfgHNnOunVJ4sh2kNq_4I9xVFT2so_ZmZVmEbqjZEV5Te5pKepMVDkvCWcXaHHuL881FddoGcKepGC04Fws0M96B_oLvHLSt5nxADi60XVue8BujLa3RxmtG7BxHmvXj52Vgwbc2-EfcyZBQ7TDNPUYOhmi1ThEP-k4eQhYyQAtTotxB3gLA3jZ2WMamaQSIft23dTDjDp_uEVXRnYBln_5Bn0-PX6sX7LN2_Pr-mGTaUZ5zApBecUYENqKXOas5aIUOdDKVDQHRoyEQilQRMu2VrVuy1JpqJRUYOo6eXSDVifdoC10rtm7yQ_pYPM-29XM1uUkn72qCClJkQjZiaC9C8GDaUZve-kPDSXN_IPmTJx_wH4BgoF8Dw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Araujo, Marcelo Vitor Oliveira</creator><creator>Lages, Eduardo Nobre</creator><creator>Cavalcante, Márcio André Araújo</creator><general>Associação Brasileira de Ciências Mecânicas</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0002-4759-4374</orcidid><orcidid>https://orcid.org/0000-0001-6704-4057</orcidid><orcidid>https://orcid.org/0000-0002-8317-8714</orcidid></search><sort><creationdate>2020</creationdate><title>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</title><author>Araujo, Marcelo Vitor Oliveira ; Lages, Eduardo Nobre ; Cavalcante, Márcio André Araújo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENGINEERING, CIVIL</topic><topic>ENGINEERING, MECHANICAL</topic><topic>MECHANICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araujo, Marcelo Vitor Oliveira</creatorcontrib><creatorcontrib>Lages, Eduardo Nobre</creatorcontrib><creatorcontrib>Cavalcante, Márcio André Araújo</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Latin American journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araujo, Marcelo Vitor Oliveira</au><au>Lages, Eduardo Nobre</au><au>Cavalcante, Márcio André Araújo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</atitle><jtitle>Latin American journal of solids and structures</jtitle><addtitle>Lat. Am. j. solids struct</addtitle><date>2020</date><risdate>2020</risdate><volume>17</volume><issue>8</issue><issn>1679-7817</issn><issn>1679-7825</issn><eissn>1679-7825</eissn><abstract>Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.</abstract><pub>Associação Brasileira de Ciências Mecânicas</pub><doi>10.1590/1679-78256053</doi><orcidid>https://orcid.org/0000-0002-4759-4374</orcidid><orcidid>https://orcid.org/0000-0001-6704-4057</orcidid><orcidid>https://orcid.org/0000-0002-8317-8714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1679-7817 |
ispartof | Latin American journal of solids and structures, 2020, Vol.17 (8) |
issn | 1679-7817 1679-7825 1679-7825 |
language | eng |
recordid | cdi_scielo_journals_S1679_78252020000800604 |
source | SciELO; EZB Electronic Journals Library |
subjects | ENGINEERING, CIVIL ENGINEERING, MECHANICAL MECHANICS |
title | Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkerboard-free%20topology%20optimization%20for%20compliance%20minimization%20of%20continuum%20elastic%20structures%20based%20on%20the%20generalized%20finite-volume%20theory&rft.jtitle=Latin%20American%20journal%20of%20solids%20and%20structures&rft.au=Araujo,%20Marcelo%20Vitor%20Oliveira&rft.date=2020&rft.volume=17&rft.issue=8&rft.issn=1679-7817&rft.eissn=1679-7825&rft_id=info:doi/10.1590/1679-78256053&rft_dat=%3Cscielo_cross%3ES1679_78252020000800604%3C/scielo_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S1679_78252020000800604&rfr_iscdi=true |