Loading…

Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory

Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonst...

Full description

Saved in:
Bibliographic Details
Published in:Latin American journal of solids and structures 2020, Vol.17 (8)
Main Authors: Araujo, Marcelo Vitor Oliveira, Lages, Eduardo Nobre, Cavalcante, Márcio André Araújo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053
cites cdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053
container_end_page
container_issue 8
container_start_page
container_title Latin American journal of solids and structures
container_volume 17
creator Araujo, Marcelo Vitor Oliveira
Lages, Eduardo Nobre
Cavalcante, Márcio André Araújo
description Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.
doi_str_mv 10.1590/1679-78256053
format article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S1679_78252020000800604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1679_78252020000800604</scielo_id><sourcerecordid>S1679_78252020000800604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</originalsourceid><addsrcrecordid>eNpFUctOwzAQtBBIVNAjd_9Aih3HcXJEFS-pEgfgHNnOunVJ4sh2kNq_4I9xVFT2so_ZmZVmEbqjZEV5Te5pKepMVDkvCWcXaHHuL881FddoGcKepGC04Fws0M96B_oLvHLSt5nxADi60XVue8BujLa3RxmtG7BxHmvXj52Vgwbc2-EfcyZBQ7TDNPUYOhmi1ThEP-k4eQhYyQAtTotxB3gLA3jZ2WMamaQSIft23dTDjDp_uEVXRnYBln_5Bn0-PX6sX7LN2_Pr-mGTaUZ5zApBecUYENqKXOas5aIUOdDKVDQHRoyEQilQRMu2VrVuy1JpqJRUYOo6eXSDVifdoC10rtm7yQ_pYPM-29XM1uUkn72qCClJkQjZiaC9C8GDaUZve-kPDSXN_IPmTJx_wH4BgoF8Dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</title><source>SciELO</source><source>EZB Electronic Journals Library</source><creator>Araujo, Marcelo Vitor Oliveira ; Lages, Eduardo Nobre ; Cavalcante, Márcio André Araújo</creator><creatorcontrib>Araujo, Marcelo Vitor Oliveira ; Lages, Eduardo Nobre ; Cavalcante, Márcio André Araújo</creatorcontrib><description>Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.</description><identifier>ISSN: 1679-7817</identifier><identifier>ISSN: 1679-7825</identifier><identifier>EISSN: 1679-7825</identifier><identifier>DOI: 10.1590/1679-78256053</identifier><language>eng</language><publisher>Associação Brasileira de Ciências Mecânicas</publisher><subject>ENGINEERING, CIVIL ; ENGINEERING, MECHANICAL ; MECHANICS</subject><ispartof>Latin American journal of solids and structures, 2020, Vol.17 (8)</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</citedby><cites>FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</cites><orcidid>0000-0002-4759-4374 ; 0000-0001-6704-4057 ; 0000-0002-8317-8714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,24131,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Araujo, Marcelo Vitor Oliveira</creatorcontrib><creatorcontrib>Lages, Eduardo Nobre</creatorcontrib><creatorcontrib>Cavalcante, Márcio André Araújo</creatorcontrib><title>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</title><title>Latin American journal of solids and structures</title><addtitle>Lat. Am. j. solids struct</addtitle><description>Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.</description><subject>ENGINEERING, CIVIL</subject><subject>ENGINEERING, MECHANICAL</subject><subject>MECHANICS</subject><issn>1679-7817</issn><issn>1679-7825</issn><issn>1679-7825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFUctOwzAQtBBIVNAjd_9Aih3HcXJEFS-pEgfgHNnOunVJ4sh2kNq_4I9xVFT2so_ZmZVmEbqjZEV5Te5pKepMVDkvCWcXaHHuL881FddoGcKepGC04Fws0M96B_oLvHLSt5nxADi60XVue8BujLa3RxmtG7BxHmvXj52Vgwbc2-EfcyZBQ7TDNPUYOhmi1ThEP-k4eQhYyQAtTotxB3gLA3jZ2WMamaQSIft23dTDjDp_uEVXRnYBln_5Bn0-PX6sX7LN2_Pr-mGTaUZ5zApBecUYENqKXOas5aIUOdDKVDQHRoyEQilQRMu2VrVuy1JpqJRUYOo6eXSDVifdoC10rtm7yQ_pYPM-29XM1uUkn72qCClJkQjZiaC9C8GDaUZve-kPDSXN_IPmTJx_wH4BgoF8Dw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Araujo, Marcelo Vitor Oliveira</creator><creator>Lages, Eduardo Nobre</creator><creator>Cavalcante, Márcio André Araújo</creator><general>Associação Brasileira de Ciências Mecânicas</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0002-4759-4374</orcidid><orcidid>https://orcid.org/0000-0001-6704-4057</orcidid><orcidid>https://orcid.org/0000-0002-8317-8714</orcidid></search><sort><creationdate>2020</creationdate><title>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</title><author>Araujo, Marcelo Vitor Oliveira ; Lages, Eduardo Nobre ; Cavalcante, Márcio André Araújo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENGINEERING, CIVIL</topic><topic>ENGINEERING, MECHANICAL</topic><topic>MECHANICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araujo, Marcelo Vitor Oliveira</creatorcontrib><creatorcontrib>Lages, Eduardo Nobre</creatorcontrib><creatorcontrib>Cavalcante, Márcio André Araújo</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Latin American journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araujo, Marcelo Vitor Oliveira</au><au>Lages, Eduardo Nobre</au><au>Cavalcante, Márcio André Araújo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory</atitle><jtitle>Latin American journal of solids and structures</jtitle><addtitle>Lat. Am. j. solids struct</addtitle><date>2020</date><risdate>2020</risdate><volume>17</volume><issue>8</issue><issn>1679-7817</issn><issn>1679-7825</issn><eissn>1679-7825</eissn><abstract>Abstract Topology optimization is a well-suited method to establish the best material distribution inside an analysis domain. It is common to observe some numerical instabilities in its gradient-based version, such as the checkerboard pattern, mesh dependence, and local minima. This research demonstrates the generalized finite-volume theory's checkerboard-free property by performing topology optimization algorithms without filtering techniques. The formation of checkerboard regions is associated with the finite element method's displacement field assumptions, where the equilibrium and continuity conditions are satisfied through the element nodes. On the other hand, the generalized finite-volume theory satisfies the continuity conditions between common faces of adjacent subvolumes, which is more likely from the continuum mechanics point of view. Also, the topology optimization algorithms based on the generalized finite-volume theory are performed using a mesh independent filter that regularizes the subvolume sensitivities, providing optimum topologies that avoid the mesh dependence and length scale issues.</abstract><pub>Associação Brasileira de Ciências Mecânicas</pub><doi>10.1590/1679-78256053</doi><orcidid>https://orcid.org/0000-0002-4759-4374</orcidid><orcidid>https://orcid.org/0000-0001-6704-4057</orcidid><orcidid>https://orcid.org/0000-0002-8317-8714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1679-7817
ispartof Latin American journal of solids and structures, 2020, Vol.17 (8)
issn 1679-7817
1679-7825
1679-7825
language eng
recordid cdi_scielo_journals_S1679_78252020000800604
source SciELO; EZB Electronic Journals Library
subjects ENGINEERING, CIVIL
ENGINEERING, MECHANICAL
MECHANICS
title Checkerboard-free topology optimization for compliance minimization of continuum elastic structures based on the generalized finite-volume theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkerboard-free%20topology%20optimization%20for%20compliance%20minimization%20of%20continuum%20elastic%20structures%20based%20on%20the%20generalized%20finite-volume%20theory&rft.jtitle=Latin%20American%20journal%20of%20solids%20and%20structures&rft.au=Araujo,%20Marcelo%20Vitor%20Oliveira&rft.date=2020&rft.volume=17&rft.issue=8&rft.issn=1679-7817&rft.eissn=1679-7825&rft_id=info:doi/10.1590/1679-78256053&rft_dat=%3Cscielo_cross%3ES1679_78252020000800604%3C/scielo_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-4715833e01d72a23d57672e18f812e30fae4bbeb0cad9b9cd66bce8babef99053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S1679_78252020000800604&rfr_iscdi=true