Loading…

PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS

ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variatio...

Full description

Saved in:
Bibliographic Details
Published in:Caatinga 2020-10, Vol.33 (4), p.1150-1157
Main Authors: MILANÊS, TARLAN OLIVEIRA, SOARES, LUCIANA FELIZARDO PEREIRA, RIBEIRO, MARIA NORMA, CARVALHO, FRANCISCO FERNANDO RAMOS DE
Format: Article
Language:eng ; por
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133
cites cdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133
container_end_page 1157
container_issue 4
container_start_page 1150
container_title Caatinga
container_volume 33
creator MILANÊS, TARLAN OLIVEIRA
SOARES, LUCIANA FELIZARDO PEREIRA
RIBEIRO, MARIA NORMA
CARVALHO, FRANCISCO FERNANDO RAMOS DE
description ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups. RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas du
doi_str_mv 10.1590/1983-21252020v33n430rc
format article
fullrecord <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S1983_21252020000401150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1983_21252020000401150</scielo_id><sourcerecordid>2476167604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaLgmPsLEvC58ybp52OImQ103Wg60aeSpi1szG22m-Bf8G_5x-yYTjwv98I951w4B6FbAmPiRXBPopA5lFCPAoV3xjYug9ZeoMH5cIkGQAAcRvznazTquhX0YBELA3eAzFxmk1k25amQmKc8edFK98sDFjwTXGssYp5xkctM6VwJjWcTrHmac6zSr0-NdSzlHC-0Sh_xdJHk6olniucS51LEaS-4QVeNWXf16GcO0WIicxE7yexRCZ44lgHsHTesoSmrsGFNxfwyaMLGkMj6jXE9asH3SEWrklhSB0FlDIWwqksbmKCiLljC2BCNT76dXdbrbbHaHtpN_7DQxyiK34x6uECIB73g7iTYtdu3Q93t_yTUDXziBz64Pcs_sWy77bq2bopdu3w17UdBoDhWUPyzP1fAvgEfmXBT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476167604</pqid></control><display><type>article</type><title>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</title><source>Publicly Available Content Database</source><source>SciELO</source><creator>MILANÊS, TARLAN OLIVEIRA ; SOARES, LUCIANA FELIZARDO PEREIRA ; RIBEIRO, MARIA NORMA ; CARVALHO, FRANCISCO FERNANDO RAMOS DE</creator><creatorcontrib>MILANÊS, TARLAN OLIVEIRA ; SOARES, LUCIANA FELIZARDO PEREIRA ; RIBEIRO, MARIA NORMA ; CARVALHO, FRANCISCO FERNANDO RAMOS DE</creatorcontrib><description>ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups. RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.</description><identifier>ISSN: 0100-316X</identifier><identifier>ISSN: 1983-2125</identifier><identifier>EISSN: 1983-2125</identifier><identifier>DOI: 10.1590/1983-21252020v33n430rc</identifier><language>eng ; por</language><publisher>Mossoro: Universidade Federal Rural do Semiárido</publisher><subject>AGRICULTURE, DAIRY &amp; ANIMAL SCIENCE ; AGRONOMY ; Body weight ; Carbohydrates ; Carcasses ; Classification ; Correlation coefficient ; Correlation coefficients ; Croup ; Discriminant analysis ; Dry matter ; FISHERIES ; FOOD SCIENCE &amp; TECHNOLOGY ; FORESTRY ; Multivariate analysis ; Nuclear factor I ; Sheep ; Variation ; VETERINARY SCIENCES</subject><ispartof>Caatinga, 2020-10, Vol.33 (4), p.1150-1157</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/deed.pt (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</citedby><cites>FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</cites><orcidid>0000-0003-3373-3246 ; 0000-0002-7415-725X ; 0000-0001-9211-0263 ; 0000-0003-3504-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2476167604?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,24149,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>MILANÊS, TARLAN OLIVEIRA</creatorcontrib><creatorcontrib>SOARES, LUCIANA FELIZARDO PEREIRA</creatorcontrib><creatorcontrib>RIBEIRO, MARIA NORMA</creatorcontrib><creatorcontrib>CARVALHO, FRANCISCO FERNANDO RAMOS DE</creatorcontrib><title>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</title><title>Caatinga</title><addtitle>Rev. Caatinga</addtitle><description>ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups. RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.</description><subject>AGRICULTURE, DAIRY &amp; ANIMAL SCIENCE</subject><subject>AGRONOMY</subject><subject>Body weight</subject><subject>Carbohydrates</subject><subject>Carcasses</subject><subject>Classification</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Croup</subject><subject>Discriminant analysis</subject><subject>Dry matter</subject><subject>FISHERIES</subject><subject>FOOD SCIENCE &amp; TECHNOLOGY</subject><subject>FORESTRY</subject><subject>Multivariate analysis</subject><subject>Nuclear factor I</subject><subject>Sheep</subject><subject>Variation</subject><subject>VETERINARY SCIENCES</subject><issn>0100-316X</issn><issn>1983-2125</issn><issn>1983-2125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUV1LwzAUDaLgmPsLEvC58ybp52OImQ103Wg60aeSpi1szG22m-Bf8G_5x-yYTjwv98I951w4B6FbAmPiRXBPopA5lFCPAoV3xjYug9ZeoMH5cIkGQAAcRvznazTquhX0YBELA3eAzFxmk1k25amQmKc8edFK98sDFjwTXGssYp5xkctM6VwJjWcTrHmac6zSr0-NdSzlHC-0Sh_xdJHk6olniucS51LEaS-4QVeNWXf16GcO0WIicxE7yexRCZ44lgHsHTesoSmrsGFNxfwyaMLGkMj6jXE9asH3SEWrklhSB0FlDIWwqksbmKCiLljC2BCNT76dXdbrbbHaHtpN_7DQxyiK34x6uECIB73g7iTYtdu3Q93t_yTUDXziBz64Pcs_sWy77bq2bopdu3w17UdBoDhWUPyzP1fAvgEfmXBT</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>MILANÊS, TARLAN OLIVEIRA</creator><creator>SOARES, LUCIANA FELIZARDO PEREIRA</creator><creator>RIBEIRO, MARIA NORMA</creator><creator>CARVALHO, FRANCISCO FERNANDO RAMOS DE</creator><general>Universidade Federal Rural do Semiárido</general><general>Universidade Federal Rural do Semi-Árido</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0003-3373-3246</orcidid><orcidid>https://orcid.org/0000-0002-7415-725X</orcidid><orcidid>https://orcid.org/0000-0001-9211-0263</orcidid><orcidid>https://orcid.org/0000-0003-3504-3783</orcidid></search><sort><creationdate>202010</creationdate><title>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</title><author>MILANÊS, TARLAN OLIVEIRA ; SOARES, LUCIANA FELIZARDO PEREIRA ; RIBEIRO, MARIA NORMA ; CARVALHO, FRANCISCO FERNANDO RAMOS DE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2020</creationdate><topic>AGRICULTURE, DAIRY &amp; ANIMAL SCIENCE</topic><topic>AGRONOMY</topic><topic>Body weight</topic><topic>Carbohydrates</topic><topic>Carcasses</topic><topic>Classification</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Croup</topic><topic>Discriminant analysis</topic><topic>Dry matter</topic><topic>FISHERIES</topic><topic>FOOD SCIENCE &amp; TECHNOLOGY</topic><topic>FORESTRY</topic><topic>Multivariate analysis</topic><topic>Nuclear factor I</topic><topic>Sheep</topic><topic>Variation</topic><topic>VETERINARY SCIENCES</topic><toplevel>online_resources</toplevel><creatorcontrib>MILANÊS, TARLAN OLIVEIRA</creatorcontrib><creatorcontrib>SOARES, LUCIANA FELIZARDO PEREIRA</creatorcontrib><creatorcontrib>RIBEIRO, MARIA NORMA</creatorcontrib><creatorcontrib>CARVALHO, FRANCISCO FERNANDO RAMOS DE</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>Caatinga</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MILANÊS, TARLAN OLIVEIRA</au><au>SOARES, LUCIANA FELIZARDO PEREIRA</au><au>RIBEIRO, MARIA NORMA</au><au>CARVALHO, FRANCISCO FERNANDO RAMOS DE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</atitle><jtitle>Caatinga</jtitle><addtitle>Rev. Caatinga</addtitle><date>2020-10</date><risdate>2020</risdate><volume>33</volume><issue>4</issue><spage>1150</spage><epage>1157</epage><pages>1150-1157</pages><issn>0100-316X</issn><issn>1983-2125</issn><eissn>1983-2125</eissn><abstract>ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups. RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.</abstract><cop>Mossoro</cop><pub>Universidade Federal Rural do Semiárido</pub><doi>10.1590/1983-21252020v33n430rc</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3373-3246</orcidid><orcidid>https://orcid.org/0000-0002-7415-725X</orcidid><orcidid>https://orcid.org/0000-0001-9211-0263</orcidid><orcidid>https://orcid.org/0000-0003-3504-3783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0100-316X
ispartof Caatinga, 2020-10, Vol.33 (4), p.1150-1157
issn 0100-316X
1983-2125
1983-2125
language eng ; por
recordid cdi_scielo_journals_S1983_21252020000401150
source Publicly Available Content Database; SciELO
subjects AGRICULTURE, DAIRY & ANIMAL SCIENCE
AGRONOMY
Body weight
Carbohydrates
Carcasses
Classification
Correlation coefficient
Correlation coefficients
Croup
Discriminant analysis
Dry matter
FISHERIES
FOOD SCIENCE & TECHNOLOGY
FORESTRY
Multivariate analysis
Nuclear factor I
Sheep
Variation
VETERINARY SCIENCES
title PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERFORMANCE%20ANALYSIS%20AND%20CARCASS%20CHARACTERISTICS%20OF%20SANTA%20IN%C3%8AS%20SHEEP%20USING%20MULTIVARIATE%20TECHNICS&rft.jtitle=Caatinga&rft.au=MILAN%C3%8AS,%20TARLAN%20OLIVEIRA&rft.date=2020-10&rft.volume=33&rft.issue=4&rft.spage=1150&rft.epage=1157&rft.pages=1150-1157&rft.issn=0100-316X&rft.eissn=1983-2125&rft_id=info:doi/10.1590/1983-21252020v33n430rc&rft_dat=%3Cproquest_sciel%3E2476167604%3C/proquest_sciel%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476167604&rft_id=info:pmid/&rft_scielo_id=S1983_21252020000401150&rfr_iscdi=true