Loading…
PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variatio...
Saved in:
Published in: | Caatinga 2020-10, Vol.33 (4), p.1150-1157 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | eng ; por |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133 |
container_end_page | 1157 |
container_issue | 4 |
container_start_page | 1150 |
container_title | Caatinga |
container_volume | 33 |
creator | MILANÊS, TARLAN OLIVEIRA SOARES, LUCIANA FELIZARDO PEREIRA RIBEIRO, MARIA NORMA CARVALHO, FRANCISCO FERNANDO RAMOS DE |
description | ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.
RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas du |
doi_str_mv | 10.1590/1983-21252020v33n430rc |
format | article |
fullrecord | <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S1983_21252020000401150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1983_21252020000401150</scielo_id><sourcerecordid>2476167604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaLgmPsLEvC58ybp52OImQ103Wg60aeSpi1szG22m-Bf8G_5x-yYTjwv98I951w4B6FbAmPiRXBPopA5lFCPAoV3xjYug9ZeoMH5cIkGQAAcRvznazTquhX0YBELA3eAzFxmk1k25amQmKc8edFK98sDFjwTXGssYp5xkctM6VwJjWcTrHmac6zSr0-NdSzlHC-0Sh_xdJHk6olniucS51LEaS-4QVeNWXf16GcO0WIicxE7yexRCZ44lgHsHTesoSmrsGFNxfwyaMLGkMj6jXE9asH3SEWrklhSB0FlDIWwqksbmKCiLljC2BCNT76dXdbrbbHaHtpN_7DQxyiK34x6uECIB73g7iTYtdu3Q93t_yTUDXziBz64Pcs_sWy77bq2bopdu3w17UdBoDhWUPyzP1fAvgEfmXBT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476167604</pqid></control><display><type>article</type><title>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</title><source>Publicly Available Content Database</source><source>SciELO</source><creator>MILANÊS, TARLAN OLIVEIRA ; SOARES, LUCIANA FELIZARDO PEREIRA ; RIBEIRO, MARIA NORMA ; CARVALHO, FRANCISCO FERNANDO RAMOS DE</creator><creatorcontrib>MILANÊS, TARLAN OLIVEIRA ; SOARES, LUCIANA FELIZARDO PEREIRA ; RIBEIRO, MARIA NORMA ; CARVALHO, FRANCISCO FERNANDO RAMOS DE</creatorcontrib><description>ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.
RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.</description><identifier>ISSN: 0100-316X</identifier><identifier>ISSN: 1983-2125</identifier><identifier>EISSN: 1983-2125</identifier><identifier>DOI: 10.1590/1983-21252020v33n430rc</identifier><language>eng ; por</language><publisher>Mossoro: Universidade Federal Rural do Semiárido</publisher><subject>AGRICULTURE, DAIRY & ANIMAL SCIENCE ; AGRONOMY ; Body weight ; Carbohydrates ; Carcasses ; Classification ; Correlation coefficient ; Correlation coefficients ; Croup ; Discriminant analysis ; Dry matter ; FISHERIES ; FOOD SCIENCE & TECHNOLOGY ; FORESTRY ; Multivariate analysis ; Nuclear factor I ; Sheep ; Variation ; VETERINARY SCIENCES</subject><ispartof>Caatinga, 2020-10, Vol.33 (4), p.1150-1157</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/deed.pt (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</citedby><cites>FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</cites><orcidid>0000-0003-3373-3246 ; 0000-0002-7415-725X ; 0000-0001-9211-0263 ; 0000-0003-3504-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2476167604?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,24149,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>MILANÊS, TARLAN OLIVEIRA</creatorcontrib><creatorcontrib>SOARES, LUCIANA FELIZARDO PEREIRA</creatorcontrib><creatorcontrib>RIBEIRO, MARIA NORMA</creatorcontrib><creatorcontrib>CARVALHO, FRANCISCO FERNANDO RAMOS DE</creatorcontrib><title>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</title><title>Caatinga</title><addtitle>Rev. Caatinga</addtitle><description>ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.
RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.</description><subject>AGRICULTURE, DAIRY & ANIMAL SCIENCE</subject><subject>AGRONOMY</subject><subject>Body weight</subject><subject>Carbohydrates</subject><subject>Carcasses</subject><subject>Classification</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Croup</subject><subject>Discriminant analysis</subject><subject>Dry matter</subject><subject>FISHERIES</subject><subject>FOOD SCIENCE & TECHNOLOGY</subject><subject>FORESTRY</subject><subject>Multivariate analysis</subject><subject>Nuclear factor I</subject><subject>Sheep</subject><subject>Variation</subject><subject>VETERINARY SCIENCES</subject><issn>0100-316X</issn><issn>1983-2125</issn><issn>1983-2125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUV1LwzAUDaLgmPsLEvC58ybp52OImQ103Wg60aeSpi1szG22m-Bf8G_5x-yYTjwv98I951w4B6FbAmPiRXBPopA5lFCPAoV3xjYug9ZeoMH5cIkGQAAcRvznazTquhX0YBELA3eAzFxmk1k25amQmKc8edFK98sDFjwTXGssYp5xkctM6VwJjWcTrHmac6zSr0-NdSzlHC-0Sh_xdJHk6olniucS51LEaS-4QVeNWXf16GcO0WIicxE7yexRCZ44lgHsHTesoSmrsGFNxfwyaMLGkMj6jXE9asH3SEWrklhSB0FlDIWwqksbmKCiLljC2BCNT76dXdbrbbHaHtpN_7DQxyiK34x6uECIB73g7iTYtdu3Q93t_yTUDXziBz64Pcs_sWy77bq2bopdu3w17UdBoDhWUPyzP1fAvgEfmXBT</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>MILANÊS, TARLAN OLIVEIRA</creator><creator>SOARES, LUCIANA FELIZARDO PEREIRA</creator><creator>RIBEIRO, MARIA NORMA</creator><creator>CARVALHO, FRANCISCO FERNANDO RAMOS DE</creator><general>Universidade Federal Rural do Semiárido</general><general>Universidade Federal Rural do Semi-Árido</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0003-3373-3246</orcidid><orcidid>https://orcid.org/0000-0002-7415-725X</orcidid><orcidid>https://orcid.org/0000-0001-9211-0263</orcidid><orcidid>https://orcid.org/0000-0003-3504-3783</orcidid></search><sort><creationdate>202010</creationdate><title>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</title><author>MILANÊS, TARLAN OLIVEIRA ; SOARES, LUCIANA FELIZARDO PEREIRA ; RIBEIRO, MARIA NORMA ; CARVALHO, FRANCISCO FERNANDO RAMOS DE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2020</creationdate><topic>AGRICULTURE, DAIRY & ANIMAL SCIENCE</topic><topic>AGRONOMY</topic><topic>Body weight</topic><topic>Carbohydrates</topic><topic>Carcasses</topic><topic>Classification</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Croup</topic><topic>Discriminant analysis</topic><topic>Dry matter</topic><topic>FISHERIES</topic><topic>FOOD SCIENCE & TECHNOLOGY</topic><topic>FORESTRY</topic><topic>Multivariate analysis</topic><topic>Nuclear factor I</topic><topic>Sheep</topic><topic>Variation</topic><topic>VETERINARY SCIENCES</topic><toplevel>online_resources</toplevel><creatorcontrib>MILANÊS, TARLAN OLIVEIRA</creatorcontrib><creatorcontrib>SOARES, LUCIANA FELIZARDO PEREIRA</creatorcontrib><creatorcontrib>RIBEIRO, MARIA NORMA</creatorcontrib><creatorcontrib>CARVALHO, FRANCISCO FERNANDO RAMOS DE</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>Caatinga</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MILANÊS, TARLAN OLIVEIRA</au><au>SOARES, LUCIANA FELIZARDO PEREIRA</au><au>RIBEIRO, MARIA NORMA</au><au>CARVALHO, FRANCISCO FERNANDO RAMOS DE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS</atitle><jtitle>Caatinga</jtitle><addtitle>Rev. Caatinga</addtitle><date>2020-10</date><risdate>2020</risdate><volume>33</volume><issue>4</issue><spage>1150</spage><epage>1157</epage><pages>1150-1157</pages><issn>0100-316X</issn><issn>1983-2125</issn><eissn>1983-2125</eissn><abstract>ABSTRACT The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.
RESUMO O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.</abstract><cop>Mossoro</cop><pub>Universidade Federal Rural do Semiárido</pub><doi>10.1590/1983-21252020v33n430rc</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3373-3246</orcidid><orcidid>https://orcid.org/0000-0002-7415-725X</orcidid><orcidid>https://orcid.org/0000-0001-9211-0263</orcidid><orcidid>https://orcid.org/0000-0003-3504-3783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0100-316X |
ispartof | Caatinga, 2020-10, Vol.33 (4), p.1150-1157 |
issn | 0100-316X 1983-2125 1983-2125 |
language | eng ; por |
recordid | cdi_scielo_journals_S1983_21252020000401150 |
source | Publicly Available Content Database; SciELO |
subjects | AGRICULTURE, DAIRY & ANIMAL SCIENCE AGRONOMY Body weight Carbohydrates Carcasses Classification Correlation coefficient Correlation coefficients Croup Discriminant analysis Dry matter FISHERIES FOOD SCIENCE & TECHNOLOGY FORESTRY Multivariate analysis Nuclear factor I Sheep Variation VETERINARY SCIENCES |
title | PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERFORMANCE%20ANALYSIS%20AND%20CARCASS%20CHARACTERISTICS%20OF%20SANTA%20IN%C3%8AS%20SHEEP%20USING%20MULTIVARIATE%20TECHNICS&rft.jtitle=Caatinga&rft.au=MILAN%C3%8AS,%20TARLAN%20OLIVEIRA&rft.date=2020-10&rft.volume=33&rft.issue=4&rft.spage=1150&rft.epage=1157&rft.pages=1150-1157&rft.issn=0100-316X&rft.eissn=1983-2125&rft_id=info:doi/10.1590/1983-21252020v33n430rc&rft_dat=%3Cproquest_sciel%3E2476167604%3C/proquest_sciel%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-48e0fbd8f3fd36b7f8fa19c6fa452c0651d2db1c1e77daa208debc7a7d240c133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476167604&rft_id=info:pmid/&rft_scielo_id=S1983_21252020000401150&rfr_iscdi=true |