Loading…
Maximum Power Transfer versus Efficiency in Mid-Range Wireless Power Transfer Systems
AbstractThe condition for maximum power transfer of 2-coils wireless power transfer (WPT) system is derived from circuit analysis and discussed together with the respective WPT system efficiency (η). In the sequence, it is shown that a 4-coils WPT system (which can be divided in source, two communic...
Saved in:
Published in: | Journal of Microwaves, Optoelectronics and Electromagnetic Applications Optoelectronics and Electromagnetic Applications, 2015-06, Vol.14 (1), p.97-109 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AbstractThe condition for maximum power transfer of 2-coils wireless power transfer (WPT) system is derived from circuit analysis and discussed together with the respective WPT system efficiency (η). In the sequence, it is shown that a 4-coils WPT system (which can be divided in source, two communication and load circuits) without power losses at the two communication circuits (ideal 4-coils WPT system) presents, from maximum power transfer and efficiency point of view, a performance similar to those of a 2-coils WPT system. The exception is the influence of coupling coefficient (k): in 2-coils system η increases as k approaches one, while in ideal 4-coils WPT system η increases as k between the two communication coils approaches zero. In addition, realistic 4-coils WPT systems (with power losses at the two communication circuits) are also analyzed showing, for instance, that η presents a maximum as a function of k of the communication coils. In order to validate the presented theory, 4 coils were built, and a setup to perform 2-coils and 4-coils WPT systems has been carried out. Practical results show good agreement with the developed theory. |
---|---|
ISSN: | 2179-1074 2179-1074 |
DOI: | 10.1590/2179-10742015v14i1433 |