Loading…

AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression

This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transfor...

Full description

Saved in:
Bibliographic Details
Main Authors: Hu, Hang, (James) Ooi, Hsu Kiang, Hu, Anguang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3066
creator Hu, Hang
(James) Ooi, Hsu Kiang
Hu, Anguang
description This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.
doi_str_mv 10.1063/12.0028594
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_12_0028594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142345606</sourcerecordid><originalsourceid>FETCH-LOGICAL-p644-5db21c30db83bf9575b35c7a8a965ec45b7ed2f01d0eada101df70fb341d37ae3</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRsEY3PkHApaTONZMsS_FSKLjpwt0wt-jUZCadSUDf3qnt6pwfPv7D-QC4R3CJYE2eEF5CiBvW0guwQIyhiteovgQLCFtaYUo-rsFNSvsMtZw3C_C92lTWf0mvrSkPs_TTPJTJDXMvJxd8KkNXhp-gZVTHNCfnP8sovQkZk8PYH3OaMpwmpzPgjY3lYHWudFr2pQ7DGG1KuewWXHWyT_buPAuwe3nerd-q7fvrZr3aVmNNacWMwkgTaFRDVNcyzhRhmstGtjWzmjLFrcEdRAZaaSTKS8dhpwhFhnBpSQEeTrVjDIfZpknswxx9vigIophQVmdVBXg8UUm76f9XMUY3yPgrEBRHmQJhcZZJ_gBEYGlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142345606</pqid></control><display><type>conference_proceeding</type><title>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hu, Hang ; (James) Ooi, Hsu Kiang ; Hu, Anguang</creator><contributor>McMahon, Malcolm ; Armstrong, Michael R. ; Tracy, Sally J. ; Fratanduono, Dayne E. ; Lane, J. Matthew D. ; Peiris, Suhithi</contributor><creatorcontrib>Hu, Hang ; (James) Ooi, Hsu Kiang ; Hu, Anguang ; McMahon, Malcolm ; Armstrong, Michael R. ; Tracy, Sally J. ; Fratanduono, Dayne E. ; Lane, J. Matthew D. ; Peiris, Suhithi</creatorcontrib><description>This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0028594</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon oxides ; Chemical bonds ; High density ; Machine learning ; Molecular structure ; Parameters ; Random sampling ; Thermodynamic properties</subject><ispartof>AIP conference proceedings, 2024, Vol.3066 (1)</ispartof><rights>EURATOM</rights><rights>2024 EURATOM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>McMahon, Malcolm</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Tracy, Sally J.</contributor><contributor>Fratanduono, Dayne E.</contributor><contributor>Lane, J. Matthew D.</contributor><contributor>Peiris, Suhithi</contributor><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>(James) Ooi, Hsu Kiang</creatorcontrib><creatorcontrib>Hu, Anguang</creatorcontrib><title>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</title><title>AIP conference proceedings</title><description>This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.</description><subject>Carbon oxides</subject><subject>Chemical bonds</subject><subject>High density</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Parameters</subject><subject>Random sampling</subject><subject>Thermodynamic properties</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKw0AUhgdRsEY3PkHApaTONZMsS_FSKLjpwt0wt-jUZCadSUDf3qnt6pwfPv7D-QC4R3CJYE2eEF5CiBvW0guwQIyhiteovgQLCFtaYUo-rsFNSvsMtZw3C_C92lTWf0mvrSkPs_TTPJTJDXMvJxd8KkNXhp-gZVTHNCfnP8sovQkZk8PYH3OaMpwmpzPgjY3lYHWudFr2pQ7DGG1KuewWXHWyT_buPAuwe3nerd-q7fvrZr3aVmNNacWMwkgTaFRDVNcyzhRhmstGtjWzmjLFrcEdRAZaaSTKS8dhpwhFhnBpSQEeTrVjDIfZpknswxx9vigIophQVmdVBXg8UUm76f9XMUY3yPgrEBRHmQJhcZZJ_gBEYGlk</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Hu, Hang</creator><creator>(James) Ooi, Hsu Kiang</creator><creator>Hu, Anguang</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241209</creationdate><title>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</title><author>Hu, Hang ; (James) Ooi, Hsu Kiang ; Hu, Anguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p644-5db21c30db83bf9575b35c7a8a965ec45b7ed2f01d0eada101df70fb341d37ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon oxides</topic><topic>Chemical bonds</topic><topic>High density</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Parameters</topic><topic>Random sampling</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>(James) Ooi, Hsu Kiang</creatorcontrib><creatorcontrib>Hu, Anguang</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Hang</au><au>(James) Ooi, Hsu Kiang</au><au>Hu, Anguang</au><au>McMahon, Malcolm</au><au>Armstrong, Michael R.</au><au>Tracy, Sally J.</au><au>Fratanduono, Dayne E.</au><au>Lane, J. Matthew D.</au><au>Peiris, Suhithi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-09</date><risdate>2024</risdate><volume>3066</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0028594</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3066 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_12_0028594
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Carbon oxides
Chemical bonds
High density
Machine learning
Molecular structure
Parameters
Random sampling
Thermodynamic properties
title AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI-enhanced%20quantum%20simulations%20of%20oxocarbons%20using%20random%20sampling%20statistics%20under%20mechanical%20compression&rft.btitle=AIP%20conference%20proceedings&rft.au=Hu,%20Hang&rft.date=2024-12-09&rft.volume=3066&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0028594&rft_dat=%3Cproquest_scita%3E3142345606%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p644-5db21c30db83bf9575b35c7a8a965ec45b7ed2f01d0eada101df70fb341d37ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142345606&rft_id=info:pmid/&rfr_iscdi=true