Loading…
AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression
This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transfor...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3066 |
creator | Hu, Hang (James) Ooi, Hsu Kiang Hu, Anguang |
description | This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption. |
doi_str_mv | 10.1063/12.0028594 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_12_0028594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142345606</sourcerecordid><originalsourceid>FETCH-LOGICAL-p644-5db21c30db83bf9575b35c7a8a965ec45b7ed2f01d0eada101df70fb341d37ae3</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRsEY3PkHApaTONZMsS_FSKLjpwt0wt-jUZCadSUDf3qnt6pwfPv7D-QC4R3CJYE2eEF5CiBvW0guwQIyhiteovgQLCFtaYUo-rsFNSvsMtZw3C_C92lTWf0mvrSkPs_TTPJTJDXMvJxd8KkNXhp-gZVTHNCfnP8sovQkZk8PYH3OaMpwmpzPgjY3lYHWudFr2pQ7DGG1KuewWXHWyT_buPAuwe3nerd-q7fvrZr3aVmNNacWMwkgTaFRDVNcyzhRhmstGtjWzmjLFrcEdRAZaaSTKS8dhpwhFhnBpSQEeTrVjDIfZpknswxx9vigIophQVmdVBXg8UUm76f9XMUY3yPgrEBRHmQJhcZZJ_gBEYGlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142345606</pqid></control><display><type>conference_proceeding</type><title>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hu, Hang ; (James) Ooi, Hsu Kiang ; Hu, Anguang</creator><contributor>McMahon, Malcolm ; Armstrong, Michael R. ; Tracy, Sally J. ; Fratanduono, Dayne E. ; Lane, J. Matthew D. ; Peiris, Suhithi</contributor><creatorcontrib>Hu, Hang ; (James) Ooi, Hsu Kiang ; Hu, Anguang ; McMahon, Malcolm ; Armstrong, Michael R. ; Tracy, Sally J. ; Fratanduono, Dayne E. ; Lane, J. Matthew D. ; Peiris, Suhithi</creatorcontrib><description>This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0028594</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon oxides ; Chemical bonds ; High density ; Machine learning ; Molecular structure ; Parameters ; Random sampling ; Thermodynamic properties</subject><ispartof>AIP conference proceedings, 2024, Vol.3066 (1)</ispartof><rights>EURATOM</rights><rights>2024 EURATOM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>McMahon, Malcolm</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Tracy, Sally J.</contributor><contributor>Fratanduono, Dayne E.</contributor><contributor>Lane, J. Matthew D.</contributor><contributor>Peiris, Suhithi</contributor><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>(James) Ooi, Hsu Kiang</creatorcontrib><creatorcontrib>Hu, Anguang</creatorcontrib><title>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</title><title>AIP conference proceedings</title><description>This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.</description><subject>Carbon oxides</subject><subject>Chemical bonds</subject><subject>High density</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Parameters</subject><subject>Random sampling</subject><subject>Thermodynamic properties</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKw0AUhgdRsEY3PkHApaTONZMsS_FSKLjpwt0wt-jUZCadSUDf3qnt6pwfPv7D-QC4R3CJYE2eEF5CiBvW0guwQIyhiteovgQLCFtaYUo-rsFNSvsMtZw3C_C92lTWf0mvrSkPs_TTPJTJDXMvJxd8KkNXhp-gZVTHNCfnP8sovQkZk8PYH3OaMpwmpzPgjY3lYHWudFr2pQ7DGG1KuewWXHWyT_buPAuwe3nerd-q7fvrZr3aVmNNacWMwkgTaFRDVNcyzhRhmstGtjWzmjLFrcEdRAZaaSTKS8dhpwhFhnBpSQEeTrVjDIfZpknswxx9vigIophQVmdVBXg8UUm76f9XMUY3yPgrEBRHmQJhcZZJ_gBEYGlk</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Hu, Hang</creator><creator>(James) Ooi, Hsu Kiang</creator><creator>Hu, Anguang</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241209</creationdate><title>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</title><author>Hu, Hang ; (James) Ooi, Hsu Kiang ; Hu, Anguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p644-5db21c30db83bf9575b35c7a8a965ec45b7ed2f01d0eada101df70fb341d37ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon oxides</topic><topic>Chemical bonds</topic><topic>High density</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Parameters</topic><topic>Random sampling</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>(James) Ooi, Hsu Kiang</creatorcontrib><creatorcontrib>Hu, Anguang</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Hang</au><au>(James) Ooi, Hsu Kiang</au><au>Hu, Anguang</au><au>McMahon, Malcolm</au><au>Armstrong, Michael R.</au><au>Tracy, Sally J.</au><au>Fratanduono, Dayne E.</au><au>Lane, J. Matthew D.</au><au>Peiris, Suhithi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-09</date><risdate>2024</risdate><volume>3066</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study employs a Δ-machine learning model to derive structure search parameters utilized in the AIRSS package for predicting stable high-density oxocarbon materials. These parameters, including minimum intermolecular distances and densities, guide the search from molecular precursors to transform into solid oxocarbon systems. These oxygenated carbon network solids exhibit stable triangular planar carbon networks. Furthermore, we examine the transformational bonding pathways of C3O2, C5O2, and C7O2 oxocarbon solids under mechanical compression, identifying three stages: van der Waals compression, bond-breaking and forming, and final relaxation. Our findings demonstrate the potential of stable high-density oxocarbon systems across diverse structures. Future research focusing on electronic and thermal properties will be pivotal in realizing their full potential and facilitating widespread adoption.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0028594</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3066 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_12_0028594 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Carbon oxides Chemical bonds High density Machine learning Molecular structure Parameters Random sampling Thermodynamic properties |
title | AI-enhanced quantum simulations of oxocarbons using random sampling statistics under mechanical compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI-enhanced%20quantum%20simulations%20of%20oxocarbons%20using%20random%20sampling%20statistics%20under%20mechanical%20compression&rft.btitle=AIP%20conference%20proceedings&rft.au=Hu,%20Hang&rft.date=2024-12-09&rft.volume=3066&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0028594&rft_dat=%3Cproquest_scita%3E3142345606%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p644-5db21c30db83bf9575b35c7a8a965ec45b7ed2f01d0eada101df70fb341d37ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142345606&rft_id=info:pmid/&rfr_iscdi=true |