Loading…

Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen

The application of electrostatic lenses is demonstrated to give a substantial improvement of the two-dimensional (2D) ion/electron imaging technique. This combination of ion lens optics and 2D detection makes “velocity map imaging” possible, i.e., all particles with the same initial velocity vector...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 1997-09, Vol.68 (9), p.3477-3484
Main Authors: Eppink, André T. J. B., Parker, David H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of electrostatic lenses is demonstrated to give a substantial improvement of the two-dimensional (2D) ion/electron imaging technique. This combination of ion lens optics and 2D detection makes “velocity map imaging” possible, i.e., all particles with the same initial velocity vector are mapped onto the same point on the detector. Whereas the more common application of grid electrodes leads to transmission reduction, severe trajectory deflections and blurring due to the non-point source geometry, these problems are avoided with open lens electrodes. A three-plate assembly with aperture electrodes has been tested and its properties are compared with those of grid electrodes. The photodissociation processes occurring in molecular oxygen following the two-photon 3dπ( 3 Σ 1g − )(v=2, N=2)←X( 3 Σ g − ) Rydberg excitation around 225 nm are presented here to show the improvement in spatial resolution in the ion and electron images. Simulated trajectory calculations show good agreement with experiment and support the appealing properties of this velocity mapping technique.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.1148310