Loading…

Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space

A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten-dimensional real representation of the gro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2001-04, Vol.42 (4), p.1533-1562
Main Authors: Gufan, Yu. M., Popov, Al. V., Sartori, G., Talamini, V., Valente, G., Vinberg, E. B.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3
cites cdi_FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3
container_end_page 1562
container_issue 4
container_start_page 1533
container_title Journal of mathematical physics
container_volume 42
creator Gufan, Yu. M.
Popov, Al. V.
Sartori, G.
Talamini, V.
Valente, G.
Vinberg, E. B.
description A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten-dimensional real representation of the group G= O 3 ⊗ U 1 ×〈 T  〉. We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group–subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial G-invariant free energy, calculated by Mermin, are also determined.
doi_str_mv 10.1063/1.1345871
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1345871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoOFYX_oNsFabmTjJJupSqVSi40fWQ5mEjTjIkcaT_3r7AvasDHx_3cg5C10CmQDi9gylQ1koBJ6gCIme14K08RRUhTVM3TMpzdJHzJyEAkrEKpYWNvS3Ja-zDqJJXoeCytjFtsBqGFJVe4xJ3CBtbbOp9UMXHgKPDHyl-B4NzUcXmHXiof9RosY7B2JD31AfscywpDtsXeVDaXqIzp76yvTrmBL0_Pb7Nn-vl6-Jlfr-sNaVNqZWRHFaUOwOaQita4YCuXKslp40FMRNgOAFhtQJtJOFSt5QBoawBJpSmE3RzuKtTzDlZ1w3J9yptOiDdbqwOuuNYW_f24Gbty77f_-Qxpj-xG4yjv3SMeak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Gufan, Yu. M. ; Popov, Al. V. ; Sartori, G. ; Talamini, V. ; Valente, G. ; Vinberg, E. B.</creator><creatorcontrib>Gufan, Yu. M. ; Popov, Al. V. ; Sartori, G. ; Talamini, V. ; Valente, G. ; Vinberg, E. B.</creatorcontrib><description>A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten-dimensional real representation of the group G= O 3 ⊗ U 1 ×〈 T  〉. We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group–subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial G-invariant free energy, calculated by Mermin, are also determined.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1345871</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2001-04, Vol.42 (4), p.1533-1562</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3</citedby><cites>FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1345871$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Gufan, Yu. M.</creatorcontrib><creatorcontrib>Popov, Al. V.</creatorcontrib><creatorcontrib>Sartori, G.</creatorcontrib><creatorcontrib>Talamini, V.</creatorcontrib><creatorcontrib>Valente, G.</creatorcontrib><creatorcontrib>Vinberg, E. B.</creatorcontrib><title>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</title><title>Journal of mathematical physics</title><description>A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten-dimensional real representation of the group G= O 3 ⊗ U 1 ×〈 T  〉. We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group–subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial G-invariant free energy, calculated by Mermin, are also determined.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoOFYX_oNsFabmTjJJupSqVSi40fWQ5mEjTjIkcaT_3r7AvasDHx_3cg5C10CmQDi9gylQ1koBJ6gCIme14K08RRUhTVM3TMpzdJHzJyEAkrEKpYWNvS3Ja-zDqJJXoeCytjFtsBqGFJVe4xJ3CBtbbOp9UMXHgKPDHyl-B4NzUcXmHXiof9RosY7B2JD31AfscywpDtsXeVDaXqIzp76yvTrmBL0_Pb7Nn-vl6-Jlfr-sNaVNqZWRHFaUOwOaQita4YCuXKslp40FMRNgOAFhtQJtJOFSt5QBoawBJpSmE3RzuKtTzDlZ1w3J9yptOiDdbqwOuuNYW_f24Gbty77f_-Qxpj-xG4yjv3SMeak</recordid><startdate>200104</startdate><enddate>200104</enddate><creator>Gufan, Yu. M.</creator><creator>Popov, Al. V.</creator><creator>Sartori, G.</creator><creator>Talamini, V.</creator><creator>Valente, G.</creator><creator>Vinberg, E. B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200104</creationdate><title>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</title><author>Gufan, Yu. M. ; Popov, Al. V. ; Sartori, G. ; Talamini, V. ; Valente, G. ; Vinberg, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gufan, Yu. M.</creatorcontrib><creatorcontrib>Popov, Al. V.</creatorcontrib><creatorcontrib>Sartori, G.</creatorcontrib><creatorcontrib>Talamini, V.</creatorcontrib><creatorcontrib>Valente, G.</creatorcontrib><creatorcontrib>Vinberg, E. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gufan, Yu. M.</au><au>Popov, Al. V.</au><au>Sartori, G.</au><au>Talamini, V.</au><au>Valente, G.</au><au>Vinberg, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</atitle><jtitle>Journal of mathematical physics</jtitle><date>2001-04</date><risdate>2001</risdate><volume>42</volume><issue>4</issue><spage>1533</spage><epage>1562</epage><pages>1533-1562</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten-dimensional real representation of the group G= O 3 ⊗ U 1 ×〈 T  〉. We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group–subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial G-invariant free energy, calculated by Mermin, are also determined.</abstract><doi>10.1063/1.1345871</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2001-04, Vol.42 (4), p.1533-1562
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1345871
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
title Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20invariant%20theory%20approach%20to%20the%20determination%20of%20ground%20states%20of%20D-wave%20condensates%20in%20isotropic%20space&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Gufan,%20Yu.%20M.&rft.date=2001-04&rft.volume=42&rft.issue=4&rft.spage=1533&rft.epage=1562&rft.pages=1533-1562&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1345871&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-ad861b36fd1c315757f13bf5c8632e17971d6017eca1cd8068c53410342147ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true