Loading…

Analysis of the Fenton–Karma model through an approximation by a one-dimensional map

The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2002-12, Vol.12 (4), p.1034-1042
Main Authors: Tolkacheva, E. G., Schaeffer, D. G., Gauthier, D. J., Mitchell, C. C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3
cites cdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3
container_end_page 1042
container_issue 4
container_start_page 1034
container_title Chaos (Woodbury, N.Y.)
container_volume 12
creator Tolkacheva, E. G.
Schaeffer, D. G.
Gauthier, D. J.
Mitchell, C. C.
description The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.
doi_str_mv 10.1063/1.1515170
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1515170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859407478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EoqWw4ALIS0BK8V9sZ1lVFBCV2ABby4kdGpTEIU4Q3XEHbshJcGmkrkCzmJH99GnmAXCK0RQjTq_wFMehBNoDY4xkEgkuyf5mjlmEY4RG4Mj7V4QQJjQ-BCNMhEg4EWPwPKt1ufaFhy6H3crCha07V39_ft3rttKwcsaW4aN1_csK6hrqpmndR1HprnA1TNdQQ1fbyBSVrX140iWsdHMMDnJdensy9Al4Wlw_zm-j5cPN3Xy2jDIqZRdxTqiljMRES8MFTRhOGWEo4dRamktDBE8lk6lhhGqLiGQ5Q5mOudEWy4xOwPk2Nyz11lvfqarwmS1LXVvXe4VlnDAkmJABvdiiWeu8b22umjac0a4VRmqjUWE1aAzs2RDbp5U1O3LwFoDLLeCzovtV8W_an_C7a3egakxOfwBW_oik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859407478</pqid></control><display><type>article</type><title>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tolkacheva, E. G. ; Schaeffer, D. G. ; Gauthier, D. J. ; Mitchell, C. C.</creator><creatorcontrib>Tolkacheva, E. G. ; Schaeffer, D. G. ; Gauthier, D. J. ; Mitchell, C. C.</creatorcontrib><description>The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.1515170</identifier><identifier>PMID: 12779627</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 2002-12, Vol.12 (4), p.1034-1042</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</citedby><cites>FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12779627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tolkacheva, E. G.</creatorcontrib><creatorcontrib>Schaeffer, D. G.</creatorcontrib><creatorcontrib>Gauthier, D. J.</creatorcontrib><creatorcontrib>Mitchell, C. C.</creatorcontrib><title>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EoqWw4ALIS0BK8V9sZ1lVFBCV2ABby4kdGpTEIU4Q3XEHbshJcGmkrkCzmJH99GnmAXCK0RQjTq_wFMehBNoDY4xkEgkuyf5mjlmEY4RG4Mj7V4QQJjQ-BCNMhEg4EWPwPKt1ufaFhy6H3crCha07V39_ft3rttKwcsaW4aN1_csK6hrqpmndR1HprnA1TNdQQ1fbyBSVrX140iWsdHMMDnJdensy9Al4Wlw_zm-j5cPN3Xy2jDIqZRdxTqiljMRES8MFTRhOGWEo4dRamktDBE8lk6lhhGqLiGQ5Q5mOudEWy4xOwPk2Nyz11lvfqarwmS1LXVvXe4VlnDAkmJABvdiiWeu8b22umjac0a4VRmqjUWE1aAzs2RDbp5U1O3LwFoDLLeCzovtV8W_an_C7a3egakxOfwBW_oik</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Tolkacheva, E. G.</creator><creator>Schaeffer, D. G.</creator><creator>Gauthier, D. J.</creator><creator>Mitchell, C. C.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</title><author>Tolkacheva, E. G. ; Schaeffer, D. G. ; Gauthier, D. J. ; Mitchell, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolkacheva, E. G.</creatorcontrib><creatorcontrib>Schaeffer, D. G.</creatorcontrib><creatorcontrib>Gauthier, D. J.</creatorcontrib><creatorcontrib>Mitchell, C. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolkacheva, E. G.</au><au>Schaeffer, D. G.</au><au>Gauthier, D. J.</au><au>Mitchell, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>12</volume><issue>4</issue><spage>1034</spage><epage>1042</epage><pages>1034-1042</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.</abstract><cop>United States</cop><pmid>12779627</pmid><doi>10.1063/1.1515170</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2002-12, Vol.12 (4), p.1034-1042
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_1_1515170
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Analysis of the Fenton–Karma model through an approximation by a one-dimensional map
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Fenton%E2%80%93Karma%20model%20through%20an%20approximation%20by%20a%20one-dimensional%20map&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Tolkacheva,%20E.%20G.&rft.date=2002-12-01&rft.volume=12&rft.issue=4&rft.spage=1034&rft.epage=1042&rft.pages=1034-1042&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.1515170&rft_dat=%3Cproquest_scita%3E1859407478%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859407478&rft_id=info:pmid/12779627&rfr_iscdi=true