Loading…
Analysis of the Fenton–Karma model through an approximation by a one-dimensional map
The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2002-12, Vol.12 (4), p.1034-1042 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3 |
container_end_page | 1042 |
container_issue | 4 |
container_start_page | 1034 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 12 |
creator | Tolkacheva, E. G. Schaeffer, D. G. Gauthier, D. J. Mitchell, C. C. |
description | The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns. |
doi_str_mv | 10.1063/1.1515170 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1515170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859407478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EoqWw4ALIS0BK8V9sZ1lVFBCV2ABby4kdGpTEIU4Q3XEHbshJcGmkrkCzmJH99GnmAXCK0RQjTq_wFMehBNoDY4xkEgkuyf5mjlmEY4RG4Mj7V4QQJjQ-BCNMhEg4EWPwPKt1ufaFhy6H3crCha07V39_ft3rttKwcsaW4aN1_csK6hrqpmndR1HprnA1TNdQQ1fbyBSVrX140iWsdHMMDnJdensy9Al4Wlw_zm-j5cPN3Xy2jDIqZRdxTqiljMRES8MFTRhOGWEo4dRamktDBE8lk6lhhGqLiGQ5Q5mOudEWy4xOwPk2Nyz11lvfqarwmS1LXVvXe4VlnDAkmJABvdiiWeu8b22umjac0a4VRmqjUWE1aAzs2RDbp5U1O3LwFoDLLeCzovtV8W_an_C7a3egakxOfwBW_oik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859407478</pqid></control><display><type>article</type><title>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tolkacheva, E. G. ; Schaeffer, D. G. ; Gauthier, D. J. ; Mitchell, C. C.</creator><creatorcontrib>Tolkacheva, E. G. ; Schaeffer, D. G. ; Gauthier, D. J. ; Mitchell, C. C.</creatorcontrib><description>The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.1515170</identifier><identifier>PMID: 12779627</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 2002-12, Vol.12 (4), p.1034-1042</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</citedby><cites>FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12779627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tolkacheva, E. G.</creatorcontrib><creatorcontrib>Schaeffer, D. G.</creatorcontrib><creatorcontrib>Gauthier, D. J.</creatorcontrib><creatorcontrib>Mitchell, C. C.</creatorcontrib><title>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EoqWw4ALIS0BK8V9sZ1lVFBCV2ABby4kdGpTEIU4Q3XEHbshJcGmkrkCzmJH99GnmAXCK0RQjTq_wFMehBNoDY4xkEgkuyf5mjlmEY4RG4Mj7V4QQJjQ-BCNMhEg4EWPwPKt1ufaFhy6H3crCha07V39_ft3rttKwcsaW4aN1_csK6hrqpmndR1HprnA1TNdQQ1fbyBSVrX140iWsdHMMDnJdensy9Al4Wlw_zm-j5cPN3Xy2jDIqZRdxTqiljMRES8MFTRhOGWEo4dRamktDBE8lk6lhhGqLiGQ5Q5mOudEWy4xOwPk2Nyz11lvfqarwmS1LXVvXe4VlnDAkmJABvdiiWeu8b22umjac0a4VRmqjUWE1aAzs2RDbp5U1O3LwFoDLLeCzovtV8W_an_C7a3egakxOfwBW_oik</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Tolkacheva, E. G.</creator><creator>Schaeffer, D. G.</creator><creator>Gauthier, D. J.</creator><creator>Mitchell, C. C.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</title><author>Tolkacheva, E. G. ; Schaeffer, D. G. ; Gauthier, D. J. ; Mitchell, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolkacheva, E. G.</creatorcontrib><creatorcontrib>Schaeffer, D. G.</creatorcontrib><creatorcontrib>Gauthier, D. J.</creatorcontrib><creatorcontrib>Mitchell, C. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolkacheva, E. G.</au><au>Schaeffer, D. G.</au><au>Gauthier, D. J.</au><au>Mitchell, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Fenton–Karma model through an approximation by a one-dimensional map</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>12</volume><issue>4</issue><spage>1034</spage><epage>1042</epage><pages>1034-1042</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to be understood analytically. In this paper, a map is derived that approximates the response of the Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of memory, describing the action potential duration as a function of the previous diastolic interval and the previous action potential duration. Results obtained from iteration of the map and numerical simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map admits different types of solutions corresponding to various dynamical behavior of the cardiac cell, such as 1:1 and 2:1 patterns.</abstract><cop>United States</cop><pmid>12779627</pmid><doi>10.1063/1.1515170</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2002-12, Vol.12 (4), p.1034-1042 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1515170 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
title | Analysis of the Fenton–Karma model through an approximation by a one-dimensional map |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Fenton%E2%80%93Karma%20model%20through%20an%20approximation%20by%20a%20one-dimensional%20map&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Tolkacheva,%20E.%20G.&rft.date=2002-12-01&rft.volume=12&rft.issue=4&rft.spage=1034&rft.epage=1042&rft.pages=1034-1042&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.1515170&rft_dat=%3Cproquest_scita%3E1859407478%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-6623e34252a8d673941b4240963ee3f8d276b848bd423ae0284f40ca56dae18c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859407478&rft_id=info:pmid/12779627&rfr_iscdi=true |