Loading…

Erratum: Approximate functional integral methods in statistial mechanics. I. Moment expansions

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1973-12, Vol.14 (12), p.2018-2018
Main Authors: Siegel, Armand, Burke, Terence
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2018
container_issue 12
container_start_page 2018
container_title Journal of mathematical physics
container_volume 14
creator Siegel, Armand
Burke, Terence
description
doi_str_mv 10.1063/1.1666286
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1666286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2096-a148393df0a2d841b638c2e63b29f4a6055bc3732bbb0c961b05c25a0d3e95343</originalsourceid><addsrcrecordid>eNqdkE9LAzEUxIMouFYPfoNcFXZ9-bNp1lspVQsVL3p1yWazNtJNliSV-u3d2oJ3T_MYfm9gBqFrAgUBwe5IQYQQVIoTlBGQVT4VpTxFGQClOeVSnqOLGD8BCJGcZ-h9EYJK2_4ez4Yh-J3tVTK42zqdrHdqg61L5iOMR2_S2rdxNHBMKtmY7K-r18pZHQu8LPCz741L2OwG5eL4Hy_RWac20VwddYLeHhav86d89fK4nM9WuaZQiVwRLlnF2g4UbSUnjWBSUyNYQ6uOKwFl2Wg2ZbRpGtCVIA2UmpYKWmaqknE2QTeHXB18jMF09RDGKuG7JlDvh6lJfRxmZG8PbNR2X8S7_8FfPvyB9dB27Ad0k3I1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Erratum: Approximate functional integral methods in statistial mechanics. I. Moment expansions</title><source>AIP Digital Archive</source><creator>Siegel, Armand ; Burke, Terence</creator><creatorcontrib>Siegel, Armand ; Burke, Terence</creatorcontrib><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1666286</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1973-12, Vol.14 (12), p.2018-2018</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1666286$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,1554,27905,27906,76139</link.rule.ids></links><search><creatorcontrib>Siegel, Armand</creatorcontrib><creatorcontrib>Burke, Terence</creatorcontrib><title>Erratum: Approximate functional integral methods in statistial mechanics. I. Moment expansions</title><title>Journal of mathematical physics</title><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEUxIMouFYPfoNcFXZ9-bNp1lspVQsVL3p1yWazNtJNliSV-u3d2oJ3T_MYfm9gBqFrAgUBwe5IQYQQVIoTlBGQVT4VpTxFGQClOeVSnqOLGD8BCJGcZ-h9EYJK2_4ez4Yh-J3tVTK42zqdrHdqg61L5iOMR2_S2rdxNHBMKtmY7K-r18pZHQu8LPCz741L2OwG5eL4Hy_RWac20VwddYLeHhav86d89fK4nM9WuaZQiVwRLlnF2g4UbSUnjWBSUyNYQ6uOKwFl2Wg2ZbRpGtCVIA2UmpYKWmaqknE2QTeHXB18jMF09RDGKuG7JlDvh6lJfRxmZG8PbNR2X8S7_8FfPvyB9dB27Ad0k3I1</recordid><startdate>197312</startdate><enddate>197312</enddate><creator>Siegel, Armand</creator><creator>Burke, Terence</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197312</creationdate><title>Erratum: Approximate functional integral methods in statistial mechanics. I. Moment expansions</title><author>Siegel, Armand ; Burke, Terence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2096-a148393df0a2d841b638c2e63b29f4a6055bc3732bbb0c961b05c25a0d3e95343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegel, Armand</creatorcontrib><creatorcontrib>Burke, Terence</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegel, Armand</au><au>Burke, Terence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Erratum: Approximate functional integral methods in statistial mechanics. I. Moment expansions</atitle><jtitle>Journal of mathematical physics</jtitle><date>1973-12</date><risdate>1973</risdate><volume>14</volume><issue>12</issue><spage>2018</spage><epage>2018</epage><pages>2018-2018</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><doi>10.1063/1.1666286</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1973-12, Vol.14 (12), p.2018-2018
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1666286
source AIP Digital Archive
title Erratum: Approximate functional integral methods in statistial mechanics. I. Moment expansions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Erratum:%20Approximate%20functional%20integral%20methods%20in%20statistial%20mechanics.%20I.%20Moment%20expansions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Siegel,%20Armand&rft.date=1973-12&rft.volume=14&rft.issue=12&rft.spage=2018&rft.epage=2018&rft.pages=2018-2018&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1666286&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2096-a148393df0a2d841b638c2e63b29f4a6055bc3732bbb0c961b05c25a0d3e95343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true