Loading…

Forced Couette flow simulations using direct simulation Monte Carlo method

Three-dimensional unsteady flows between two infinite walls are simulated by using the direct simulation Monte Carlo (DSMC) method. An artificial forcing that mimics the centrifugal force in the Taylor problem has been applied to the flow. The sampled behaviors of the resulting flow, including the l...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2004-12, Vol.16 (12), p.4211-4220
Main Authors: Liou, William W., Fang, Yichuan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73
cites cdi_FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73
container_end_page 4220
container_issue 12
container_start_page 4211
container_title Physics of fluids (1994)
container_volume 16
creator Liou, William W.
Fang, Yichuan
description Three-dimensional unsteady flows between two infinite walls are simulated by using the direct simulation Monte Carlo (DSMC) method. An artificial forcing that mimics the centrifugal force in the Taylor problem has been applied to the flow. The sampled behaviors of the resulting flow, including the long time average and the disturbance components, are studied. The computations have been preformed using parallel computer clusters. The results presented are for two different channel heights with various values for the forcing coefficient. The change in the channel height, which also results in changes in the flow Knudsen number and Reynolds number, affects the development of both the mean flows and the disturbances. Spatially coherent mean flow patterns, which are dominated by a hierarchy of harmonic modes, can be identified in the DSMC solutions. Temporally, the evolution of the Fourier amplitudes of the harmonic modes shows that these modes grow in a sequential manner. Disturbances with energy spectra that are significantly higher than the statistical noises are resolved. Their pathline patterns indicate that the disturbance flow fields are three dimensional and spatially coherent. These results suggest that the discrete DSMC approach is capable of capturing unsteady, three-dimensional flow disturbances that evolve around a stationary mean flow.
doi_str_mv 10.1063/1.1801092
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1801092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1801092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-Qq8LWyWabj6Ms1g8qXvQcsklWI7ubkmQV_72tLSoInmZgHl6GF6FTAjMCjF6QGRFAQJZ7aEJAyIIzxvY3O4eCMUoO0VFKrwBAZckm6G4RonEW12F0OTvcduEdJ9-Pnc4-DAmPyQ_P2ProTP51wPdhWPNaxy7g3uWXYI_RQau75E52c4qeFleP9U2xfLi-rS-XhSmlzIUzpZ43jLBqzngphdaWNaWQTSUIr6qGWkEtaCYIaFFZC1Y7zR03gjaStpxO0dk218SQUnStWkXf6_ihCKhNCYqoXQlre761yfj89fg3fgvxB6qVbf_Df5M_AcYLa0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forced Couette flow simulations using direct simulation Monte Carlo method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Liou, William W. ; Fang, Yichuan</creator><creatorcontrib>Liou, William W. ; Fang, Yichuan</creatorcontrib><description>Three-dimensional unsteady flows between two infinite walls are simulated by using the direct simulation Monte Carlo (DSMC) method. An artificial forcing that mimics the centrifugal force in the Taylor problem has been applied to the flow. The sampled behaviors of the resulting flow, including the long time average and the disturbance components, are studied. The computations have been preformed using parallel computer clusters. The results presented are for two different channel heights with various values for the forcing coefficient. The change in the channel height, which also results in changes in the flow Knudsen number and Reynolds number, affects the development of both the mean flows and the disturbances. Spatially coherent mean flow patterns, which are dominated by a hierarchy of harmonic modes, can be identified in the DSMC solutions. Temporally, the evolution of the Fourier amplitudes of the harmonic modes shows that these modes grow in a sequential manner. Disturbances with energy spectra that are significantly higher than the statistical noises are resolved. Their pathline patterns indicate that the disturbance flow fields are three dimensional and spatially coherent. These results suggest that the discrete DSMC approach is capable of capturing unsteady, three-dimensional flow disturbances that evolve around a stationary mean flow.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1801092</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 2004-12, Vol.16 (12), p.4211-4220</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73</citedby><cites>FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Liou, William W.</creatorcontrib><creatorcontrib>Fang, Yichuan</creatorcontrib><title>Forced Couette flow simulations using direct simulation Monte Carlo method</title><title>Physics of fluids (1994)</title><description>Three-dimensional unsteady flows between two infinite walls are simulated by using the direct simulation Monte Carlo (DSMC) method. An artificial forcing that mimics the centrifugal force in the Taylor problem has been applied to the flow. The sampled behaviors of the resulting flow, including the long time average and the disturbance components, are studied. The computations have been preformed using parallel computer clusters. The results presented are for two different channel heights with various values for the forcing coefficient. The change in the channel height, which also results in changes in the flow Knudsen number and Reynolds number, affects the development of both the mean flows and the disturbances. Spatially coherent mean flow patterns, which are dominated by a hierarchy of harmonic modes, can be identified in the DSMC solutions. Temporally, the evolution of the Fourier amplitudes of the harmonic modes shows that these modes grow in a sequential manner. Disturbances with energy spectra that are significantly higher than the statistical noises are resolved. Their pathline patterns indicate that the disturbance flow fields are three dimensional and spatially coherent. These results suggest that the discrete DSMC approach is capable of capturing unsteady, three-dimensional flow disturbances that evolve around a stationary mean flow.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-Qq8LWyWabj6Ms1g8qXvQcsklWI7ubkmQV_72tLSoInmZgHl6GF6FTAjMCjF6QGRFAQJZ7aEJAyIIzxvY3O4eCMUoO0VFKrwBAZckm6G4RonEW12F0OTvcduEdJ9-Pnc4-DAmPyQ_P2ProTP51wPdhWPNaxy7g3uWXYI_RQau75E52c4qeFleP9U2xfLi-rS-XhSmlzIUzpZ43jLBqzngphdaWNaWQTSUIr6qGWkEtaCYIaFFZC1Y7zR03gjaStpxO0dk218SQUnStWkXf6_ihCKhNCYqoXQlre761yfj89fg3fgvxB6qVbf_Df5M_AcYLa0Y</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Liou, William W.</creator><creator>Fang, Yichuan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041201</creationdate><title>Forced Couette flow simulations using direct simulation Monte Carlo method</title><author>Liou, William W. ; Fang, Yichuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liou, William W.</creatorcontrib><creatorcontrib>Fang, Yichuan</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liou, William W.</au><au>Fang, Yichuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced Couette flow simulations using direct simulation Monte Carlo method</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>16</volume><issue>12</issue><spage>4211</spage><epage>4220</epage><pages>4211-4220</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Three-dimensional unsteady flows between two infinite walls are simulated by using the direct simulation Monte Carlo (DSMC) method. An artificial forcing that mimics the centrifugal force in the Taylor problem has been applied to the flow. The sampled behaviors of the resulting flow, including the long time average and the disturbance components, are studied. The computations have been preformed using parallel computer clusters. The results presented are for two different channel heights with various values for the forcing coefficient. The change in the channel height, which also results in changes in the flow Knudsen number and Reynolds number, affects the development of both the mean flows and the disturbances. Spatially coherent mean flow patterns, which are dominated by a hierarchy of harmonic modes, can be identified in the DSMC solutions. Temporally, the evolution of the Fourier amplitudes of the harmonic modes shows that these modes grow in a sequential manner. Disturbances with energy spectra that are significantly higher than the statistical noises are resolved. Their pathline patterns indicate that the disturbance flow fields are three dimensional and spatially coherent. These results suggest that the discrete DSMC approach is capable of capturing unsteady, three-dimensional flow disturbances that evolve around a stationary mean flow.</abstract><doi>10.1063/1.1801092</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2004-12, Vol.16 (12), p.4211-4220
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_1801092
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
title Forced Couette flow simulations using direct simulation Monte Carlo method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20Couette%20flow%20simulations%20using%20direct%20simulation%20Monte%20Carlo%20method&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Liou,%20William%20W.&rft.date=2004-12-01&rft.volume=16&rft.issue=12&rft.spage=4211&rft.epage=4220&rft.pages=4211-4220&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1801092&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1801092%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-ec2a5b6164567298aad6b289b481744b3d83d0a6810a84dd0daea7e7c83b93f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true