Loading…

Construction of Parseval wavelets from redundant filter systems

We consider wavelets in L 2 ( R d ) which have generalized multiresolutions. This means that the initial resolution subspace V 0 in L 2 ( R d ) is not singly generated. As a result, the representation of the integer lattice Z d restricted to V 0 has a nontrivial multiplicity function. We show how th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2005-08, Vol.46 (8), p.083502-083502-28
Main Authors: Baggett, L. W., Jorgensen, P. E. T., Merrill, K. D., Packer, J. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3
cites cdi_FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3
container_end_page 083502-28
container_issue 8
container_start_page 083502
container_title Journal of mathematical physics
container_volume 46
creator Baggett, L. W.
Jorgensen, P. E. T.
Merrill, K. D.
Packer, J. A.
description We consider wavelets in L 2 ( R d ) which have generalized multiresolutions. This means that the initial resolution subspace V 0 in L 2 ( R d ) is not singly generated. As a result, the representation of the integer lattice Z d restricted to V 0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R d can be constructed directly from the generalized wavelet filters.
doi_str_mv 10.1063/1.1982768
format article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1982768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKsH_0FAPChsTTbZJHtRpPgFBT3oOWSzE1zZbkqSVvrv7bKFClJPc3nzhnkInVMyoUSwGzqhpcqlUAdoRIkqMykKdYhGhOR5lnOljtFJjF-EUKo4H6G7qe9iCkubGt9h7_CbCRFWpsXfZgUtpIhd8HMcoF52tekSdk2bIOC4jgnm8RQdOdNGONvOMfp4fHifPmez16eX6f0ss5zLlBXUEuAFoRUrrKiKXPDKykpxo2qwohQgCbgKnKydBGCsUsyqWnHKGHHEsTG6GLw-pkZH2ySwn9Z3HdikcyLKkvFyQ10NlA0-xgBOL0IzN2GtKdF9H031ts-GvRzYhYnWtC6YzjZxtyApl5L2ztuB64-aPtN-6e-Y2jvdx9wIrvcJVj7slvWidv_Bf1_4AQwZlu4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of Parseval wavelets from redundant filter systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Baggett, L. W. ; Jorgensen, P. E. T. ; Merrill, K. D. ; Packer, J. A.</creator><creatorcontrib>Baggett, L. W. ; Jorgensen, P. E. T. ; Merrill, K. D. ; Packer, J. A.</creatorcontrib><description>We consider wavelets in L 2 ( R d ) which have generalized multiresolutions. This means that the initial resolution subspace V 0 in L 2 ( R d ) is not singly generated. As a result, the representation of the integer lattice Z d restricted to V 0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R d can be constructed directly from the generalized wavelet filters.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1982768</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>ALGEBRA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Exact sciences and technology ; HILBERT SPACE ; Mathematical methods in physics ; Mathematics ; MULTIPLICITY ; Physics ; RESOLUTION ; Sciences and techniques of general use ; VECTORS ; WAVE FUNCTIONS</subject><ispartof>Journal of mathematical physics, 2005-08, Vol.46 (8), p.083502-083502-28</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3</citedby><cites>FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1982768$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17147719$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20699349$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baggett, L. W.</creatorcontrib><creatorcontrib>Jorgensen, P. E. T.</creatorcontrib><creatorcontrib>Merrill, K. D.</creatorcontrib><creatorcontrib>Packer, J. A.</creatorcontrib><title>Construction of Parseval wavelets from redundant filter systems</title><title>Journal of mathematical physics</title><description>We consider wavelets in L 2 ( R d ) which have generalized multiresolutions. This means that the initial resolution subspace V 0 in L 2 ( R d ) is not singly generated. As a result, the representation of the integer lattice Z d restricted to V 0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R d can be constructed directly from the generalized wavelet filters.</description><subject>ALGEBRA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Exact sciences and technology</subject><subject>HILBERT SPACE</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>MULTIPLICITY</subject><subject>Physics</subject><subject>RESOLUTION</subject><subject>Sciences and techniques of general use</subject><subject>VECTORS</subject><subject>WAVE FUNCTIONS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKsH_0FAPChsTTbZJHtRpPgFBT3oOWSzE1zZbkqSVvrv7bKFClJPc3nzhnkInVMyoUSwGzqhpcqlUAdoRIkqMykKdYhGhOR5lnOljtFJjF-EUKo4H6G7qe9iCkubGt9h7_CbCRFWpsXfZgUtpIhd8HMcoF52tekSdk2bIOC4jgnm8RQdOdNGONvOMfp4fHifPmez16eX6f0ss5zLlBXUEuAFoRUrrKiKXPDKykpxo2qwohQgCbgKnKydBGCsUsyqWnHKGHHEsTG6GLw-pkZH2ySwn9Z3HdikcyLKkvFyQ10NlA0-xgBOL0IzN2GtKdF9H031ts-GvRzYhYnWtC6YzjZxtyApl5L2ztuB64-aPtN-6e-Y2jvdx9wIrvcJVj7slvWidv_Bf1_4AQwZlu4</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Baggett, L. W.</creator><creator>Jorgensen, P. E. T.</creator><creator>Merrill, K. D.</creator><creator>Packer, J. A.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20050801</creationdate><title>Construction of Parseval wavelets from redundant filter systems</title><author>Baggett, L. W. ; Jorgensen, P. E. T. ; Merrill, K. D. ; Packer, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALGEBRA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Exact sciences and technology</topic><topic>HILBERT SPACE</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>MULTIPLICITY</topic><topic>Physics</topic><topic>RESOLUTION</topic><topic>Sciences and techniques of general use</topic><topic>VECTORS</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baggett, L. W.</creatorcontrib><creatorcontrib>Jorgensen, P. E. T.</creatorcontrib><creatorcontrib>Merrill, K. D.</creatorcontrib><creatorcontrib>Packer, J. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baggett, L. W.</au><au>Jorgensen, P. E. T.</au><au>Merrill, K. D.</au><au>Packer, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Parseval wavelets from redundant filter systems</atitle><jtitle>Journal of mathematical physics</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>46</volume><issue>8</issue><spage>083502</spage><epage>083502-28</epage><pages>083502-083502-28</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider wavelets in L 2 ( R d ) which have generalized multiresolutions. This means that the initial resolution subspace V 0 in L 2 ( R d ) is not singly generated. As a result, the representation of the integer lattice Z d restricted to V 0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R d can be constructed directly from the generalized wavelet filters.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1982768</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2005-08, Vol.46 (8), p.083502-083502-28
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1982768
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects ALGEBRA
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Exact sciences and technology
HILBERT SPACE
Mathematical methods in physics
Mathematics
MULTIPLICITY
Physics
RESOLUTION
Sciences and techniques of general use
VECTORS
WAVE FUNCTIONS
title Construction of Parseval wavelets from redundant filter systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Parseval%20wavelets%20from%20redundant%20filter%20systems&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Baggett,%20L.%20W.&rft.date=2005-08-01&rft.volume=46&rft.issue=8&rft.spage=083502&rft.epage=083502-28&rft.pages=083502-083502-28&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1982768&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-51c0e4501b35c6b5264bc7b84a8dec696e70efbef7df7ee33b83c8d841330f0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true