Loading…
Dynamical alignment in three species tokamak edge turbulence
Three-dimensional computations of self-consistent three species gyrofluid turbulence are carried out for tokamak edge conditions. Profiles as well as disturbances in dependent variables are followed, running the dynamical system to transport equilibrium. The third species density shows a significant...
Saved in:
Published in: | Physics of plasmas 2005-08, Vol.12 (8), p.082305-082305-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three-dimensional computations of self-consistent three species gyrofluid turbulence are carried out for tokamak edge conditions. Profiles as well as disturbances in dependent variables are followed, running the dynamical system to transport equilibrium. The third species density shows a significant correlation with that of the electrons, regardless of initial conditions and drive mechanisms. For decaying systems the densities evolve toward each other. Companion investigations with a simple two-dimensional drift wave model show this persists even if the third species is a passively advected test species field. Similarity in the transport character of electrons and the trace species does not imply that the electrons themselves have a test particle transport character. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.1993507 |