Loading…

Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number

Turbulent fluctuations in magnetohydrodynamic flows are known to become anisotropic under the action of a sufficiently strong magnetic field. We investigate this phenomenon in the case of low magnetic Reynolds number using direct numerical simulations and large eddy simulations of a forced flow in a...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2005-12, Vol.17 (12), p.125105.1-125105.12
Main Authors: Vorobev, Anatoliy, Zikanov, Oleg, Davidson, Peter A., Knaepen, Bernard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913
cites cdi_FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913
container_end_page 125105.12
container_issue 12
container_start_page 125105.1
container_title Physics of fluids (1994)
container_volume 17
creator Vorobev, Anatoliy
Zikanov, Oleg
Davidson, Peter A.
Knaepen, Bernard
description Turbulent fluctuations in magnetohydrodynamic flows are known to become anisotropic under the action of a sufficiently strong magnetic field. We investigate this phenomenon in the case of low magnetic Reynolds number using direct numerical simulations and large eddy simulations of a forced flow in a periodic box. A series of simulations is performed with different strengths of the magnetic field, varying Reynolds number, and two types of forcing, one of which is isotropic and the other limited to two-dimensional flow modes. We find that both the velocity anisotropy (difference in the relative amplitude of the velocity components) and the anisotropy of the velocity gradients are predominantly determined by the value of the magnetic interaction parameter. The effects of the Reynolds number and the type of forcing are much weaker. We also find that the anisotropy varies only slightly with the length scale.
doi_str_mv 10.1063/1.2140847
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2140847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2140847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BLx4UuiZNOk2Oy-IXLAii55LmQyttUpJU6b93l13cg-BpBuaZYXgRuiR4QTDQW7IoCMOcVUdoRjAXeQUAx9u-wjkAJafoLMZPjDEVBczQeuna6FPww5R5m_Xy3ZnkPyYdvJ6c7FuVpTE0Y2ecMplMWee_92ozejGT852OmRv7xoRzdGJlF83Fvs7R2_3d6-oxXz8_PK2W61xRUaZcQ6ksNKXUkhWsoKaQTUnASsZtZTQIBYqyRhCiCAdGsOCaW1EYqhUHQegcXe_uquBjDMbWQ2h7Gaaa4HobQ03qfQwbe7Wzg4xKdjZIp9p4WKgYlFCxjbvZuajaJFPr3a_58uFwsB60_Q___eAHyLh5jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Vorobev, Anatoliy ; Zikanov, Oleg ; Davidson, Peter A. ; Knaepen, Bernard</creator><creatorcontrib>Vorobev, Anatoliy ; Zikanov, Oleg ; Davidson, Peter A. ; Knaepen, Bernard</creatorcontrib><description>Turbulent fluctuations in magnetohydrodynamic flows are known to become anisotropic under the action of a sufficiently strong magnetic field. We investigate this phenomenon in the case of low magnetic Reynolds number using direct numerical simulations and large eddy simulations of a forced flow in a periodic box. A series of simulations is performed with different strengths of the magnetic field, varying Reynolds number, and two types of forcing, one of which is isotropic and the other limited to two-dimensional flow modes. We find that both the velocity anisotropy (difference in the relative amplitude of the velocity components) and the anisotropy of the velocity gradients are predominantly determined by the value of the magnetic interaction parameter. The effects of the Reynolds number and the type of forcing are much weaker. We also find that the anisotropy varies only slightly with the length scale.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2140847</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Magnetohydrodynamics and electrohydrodynamics ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma turbulence ; Turbulent flows, convection, and heat transfer ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Physics of fluids (1994), 2005-12, Vol.17 (12), p.125105.1-125105.12</ispartof><rights>American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913</citedby><cites>FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1558,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17465674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorobev, Anatoliy</creatorcontrib><creatorcontrib>Zikanov, Oleg</creatorcontrib><creatorcontrib>Davidson, Peter A.</creatorcontrib><creatorcontrib>Knaepen, Bernard</creatorcontrib><title>Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number</title><title>Physics of fluids (1994)</title><description>Turbulent fluctuations in magnetohydrodynamic flows are known to become anisotropic under the action of a sufficiently strong magnetic field. We investigate this phenomenon in the case of low magnetic Reynolds number using direct numerical simulations and large eddy simulations of a forced flow in a periodic box. A series of simulations is performed with different strengths of the magnetic field, varying Reynolds number, and two types of forcing, one of which is isotropic and the other limited to two-dimensional flow modes. We find that both the velocity anisotropy (difference in the relative amplitude of the velocity components) and the anisotropy of the velocity gradients are predominantly determined by the value of the magnetic interaction parameter. The effects of the Reynolds number and the type of forcing are much weaker. We also find that the anisotropy varies only slightly with the length scale.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Magnetohydrodynamics and electrohydrodynamics</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma turbulence</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BLx4UuiZNOk2Oy-IXLAii55LmQyttUpJU6b93l13cg-BpBuaZYXgRuiR4QTDQW7IoCMOcVUdoRjAXeQUAx9u-wjkAJafoLMZPjDEVBczQeuna6FPww5R5m_Xy3ZnkPyYdvJ6c7FuVpTE0Y2ecMplMWee_92ozejGT852OmRv7xoRzdGJlF83Fvs7R2_3d6-oxXz8_PK2W61xRUaZcQ6ksNKXUkhWsoKaQTUnASsZtZTQIBYqyRhCiCAdGsOCaW1EYqhUHQegcXe_uquBjDMbWQ2h7Gaaa4HobQ03qfQwbe7Wzg4xKdjZIp9p4WKgYlFCxjbvZuajaJFPr3a_58uFwsB60_Q___eAHyLh5jQ</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Vorobev, Anatoliy</creator><creator>Zikanov, Oleg</creator><creator>Davidson, Peter A.</creator><creator>Knaepen, Bernard</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051201</creationdate><title>Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number</title><author>Vorobev, Anatoliy ; Zikanov, Oleg ; Davidson, Peter A. ; Knaepen, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Magnetohydrodynamics and electrohydrodynamics</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma turbulence</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorobev, Anatoliy</creatorcontrib><creatorcontrib>Zikanov, Oleg</creatorcontrib><creatorcontrib>Davidson, Peter A.</creatorcontrib><creatorcontrib>Knaepen, Bernard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorobev, Anatoliy</au><au>Zikanov, Oleg</au><au>Davidson, Peter A.</au><au>Knaepen, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>17</volume><issue>12</issue><spage>125105.1</spage><epage>125105.12</epage><pages>125105.1-125105.12</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Turbulent fluctuations in magnetohydrodynamic flows are known to become anisotropic under the action of a sufficiently strong magnetic field. We investigate this phenomenon in the case of low magnetic Reynolds number using direct numerical simulations and large eddy simulations of a forced flow in a periodic box. A series of simulations is performed with different strengths of the magnetic field, varying Reynolds number, and two types of forcing, one of which is isotropic and the other limited to two-dimensional flow modes. We find that both the velocity anisotropy (difference in the relative amplitude of the velocity components) and the anisotropy of the velocity gradients are predominantly determined by the value of the magnetic interaction parameter. The effects of the Reynolds number and the type of forcing are much weaker. We also find that the anisotropy varies only slightly with the length scale.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2140847</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-12, Vol.17 (12), p.125105.1-125105.12
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_2140847
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Isotropic turbulence
homogeneous turbulence
Magnetohydrodynamics and electrohydrodynamics
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma turbulence
Turbulent flows, convection, and heat transfer
Waves, oscillations, and instabilities in plasmas and intense beams
title Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropy%20of%20magnetohydrodynamic%20turbulence%20at%20low%20magnetic%20Reynolds%20number&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Vorobev,%20Anatoliy&rft.date=2005-12-01&rft.volume=17&rft.issue=12&rft.spage=125105.1&rft.epage=125105.12&rft.pages=125105.1-125105.12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2140847&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_2140847%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-d65cf6b5ada42423e2ab516fa48f7ed69c6c34b911c18641098d8f92e3dc86913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true