Loading…

Chemical identification using an impedance sensor basedon dispersive charge transport

Impedance spectroscopy has been used to identify analytes in semiconducting metallophthalocyanine thin films. Above a critical concentration, the magnitudes of the high frequency conductivity changes are invariant with concentration but distinct for different analytes and can be used for analyte ide...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2006-02, Vol.88 (7), p.074104-074104-3
Main Authors: Yang, Richard D., Fruhberger, Bernd, Park, Jeongwon, Kummel, Andrew C.
Format: Article
Language:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-scitation_primary_10_1063_1_2175491Chemical_identificat3
container_end_page 074104-3
container_issue 7
container_start_page 074104
container_title Applied physics letters
container_volume 88
creator Yang, Richard D.
Fruhberger, Bernd
Park, Jeongwon
Kummel, Andrew C.
description Impedance spectroscopy has been used to identify analytes in semiconducting metallophthalocyanine thin films. Above a critical concentration, the magnitudes of the high frequency conductivity changes are invariant with concentration but distinct for different analytes and can be used for analyte identification. The analyte-induced ac conductivity changes above 5 kHz have been converted to frequency shifts in a circuit resonance and used to differentiate methanol, ethanol, and isopropanol vapors in a nitrogen carrier gas. The analyte-induced changes in the conductivity are consistent with analyte-induced changes in the charge relaxation times.
doi_str_mv 10.1063/1.2175491
format article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2175491Chemical_identificat</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_1_2175491Chemical_identificat3</originalsourceid><addsrcrecordid>eNqljk0KwjAQhYMoWH8W3iAXqGYaa3XjRhQPoOsQ21FHbFoyUfD2VlFw7-q9B4-PT4gRqDGomZ7AOIEsnS6gJSJQWRZrgHlbREopHc8WKXRFj_nSzDTROhL71RlLyu1VUoEu0LHpgSonb0zuJK2TVNZYWJejZHRceXmwjEXzKIhr9Ex3lPnZ-hPK4K3juvJhIDpHe2UcfrIvlpv1brWNOafw5pvaU2n9w4AyL3ED5iP-FTI_QvpvwBNl71oM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical identification using an impedance sensor basedon dispersive charge transport</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Yang, Richard D. ; Fruhberger, Bernd ; Park, Jeongwon ; Kummel, Andrew C.</creator><creatorcontrib>Yang, Richard D. ; Fruhberger, Bernd ; Park, Jeongwon ; Kummel, Andrew C.</creatorcontrib><description>Impedance spectroscopy has been used to identify analytes in semiconducting metallophthalocyanine thin films. Above a critical concentration, the magnitudes of the high frequency conductivity changes are invariant with concentration but distinct for different analytes and can be used for analyte identification. The analyte-induced ac conductivity changes above 5 kHz have been converted to frequency shifts in a circuit resonance and used to differentiate methanol, ethanol, and isopropanol vapors in a nitrogen carrier gas. The analyte-induced changes in the conductivity are consistent with analyte-induced changes in the charge relaxation times.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2175491</identifier><identifier>CODEN: APPLAB</identifier><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2006-02, Vol.88 (7), p.074104-074104-3</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-scitation_primary_10_1063_1_2175491Chemical_identificat3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2175491$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76129</link.rule.ids></links><search><creatorcontrib>Yang, Richard D.</creatorcontrib><creatorcontrib>Fruhberger, Bernd</creatorcontrib><creatorcontrib>Park, Jeongwon</creatorcontrib><creatorcontrib>Kummel, Andrew C.</creatorcontrib><title>Chemical identification using an impedance sensor basedon dispersive charge transport</title><title>Applied physics letters</title><description>Impedance spectroscopy has been used to identify analytes in semiconducting metallophthalocyanine thin films. Above a critical concentration, the magnitudes of the high frequency conductivity changes are invariant with concentration but distinct for different analytes and can be used for analyte identification. The analyte-induced ac conductivity changes above 5 kHz have been converted to frequency shifts in a circuit resonance and used to differentiate methanol, ethanol, and isopropanol vapors in a nitrogen carrier gas. The analyte-induced changes in the conductivity are consistent with analyte-induced changes in the charge relaxation times.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqljk0KwjAQhYMoWH8W3iAXqGYaa3XjRhQPoOsQ21FHbFoyUfD2VlFw7-q9B4-PT4gRqDGomZ7AOIEsnS6gJSJQWRZrgHlbREopHc8WKXRFj_nSzDTROhL71RlLyu1VUoEu0LHpgSonb0zuJK2TVNZYWJejZHRceXmwjEXzKIhr9Ex3lPnZ-hPK4K3juvJhIDpHe2UcfrIvlpv1brWNOafw5pvaU2n9w4AyL3ED5iP-FTI_QvpvwBNl71oM</recordid><startdate>20060217</startdate><enddate>20060217</enddate><creator>Yang, Richard D.</creator><creator>Fruhberger, Bernd</creator><creator>Park, Jeongwon</creator><creator>Kummel, Andrew C.</creator><general>American Institute of Physics</general><scope/></search><sort><creationdate>20060217</creationdate><title>Chemical identification using an impedance sensor basedon dispersive charge transport</title><author>Yang, Richard D. ; Fruhberger, Bernd ; Park, Jeongwon ; Kummel, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_1_2175491Chemical_identificat3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Richard D.</creatorcontrib><creatorcontrib>Fruhberger, Bernd</creatorcontrib><creatorcontrib>Park, Jeongwon</creatorcontrib><creatorcontrib>Kummel, Andrew C.</creatorcontrib><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Richard D.</au><au>Fruhberger, Bernd</au><au>Park, Jeongwon</au><au>Kummel, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical identification using an impedance sensor basedon dispersive charge transport</atitle><jtitle>Applied physics letters</jtitle><date>2006-02-17</date><risdate>2006</risdate><volume>88</volume><issue>7</issue><spage>074104</spage><epage>074104-3</epage><pages>074104-074104-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Impedance spectroscopy has been used to identify analytes in semiconducting metallophthalocyanine thin films. Above a critical concentration, the magnitudes of the high frequency conductivity changes are invariant with concentration but distinct for different analytes and can be used for analyte identification. The analyte-induced ac conductivity changes above 5 kHz have been converted to frequency shifts in a circuit resonance and used to differentiate methanol, ethanol, and isopropanol vapors in a nitrogen carrier gas. The analyte-induced changes in the conductivity are consistent with analyte-induced changes in the charge relaxation times.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2175491</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2006-02, Vol.88 (7), p.074104-074104-3
issn 0003-6951
1077-3118
language
recordid cdi_scitation_primary_10_1063_1_2175491Chemical_identificat
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Chemical identification using an impedance sensor basedon dispersive charge transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20identification%20using%20an%20impedance%20sensor%20basedon%20dispersive%20charge%20transport&rft.jtitle=Applied%20physics%20letters&rft.au=Yang,%20Richard%20D.&rft.date=2006-02-17&rft.volume=88&rft.issue=7&rft.spage=074104&rft.epage=074104-3&rft.pages=074104-074104-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2175491&rft_dat=%3Cscitation%3Eapl%3C/scitation%3E%3Cgrp_id%3Ecdi_FETCH-scitation_primary_10_1063_1_2175491Chemical_identificat3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true