Loading…
DNA hybridization detection by porous silicon-based DNA microarrayin conjugation with infrared microspectroscopy
A method is described for the label-free detection of DNA hybridization on porous silicon (por-Si), based upon the pairing of oligonucleotide chemistry and standard silicon nanotechnology. Por-Si with a pore diameter of approximately 30 nm was used to immobilize probe DNA. Infrared microspectroscopy...
Saved in:
Published in: | Journal of applied physics 2007-07, Vol.102 (1), p.014303-014303-7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method is described for the label-free detection of DNA hybridization on porous silicon (por-Si), based upon the pairing of oligonucleotide chemistry and standard silicon nanotechnology. Por-Si with a pore diameter of approximately 30 nm was used to immobilize probe DNA. Infrared microspectroscopy was employed to monitor the hybridization of probe-DNA immobilized on pore surfaces with its complementary DNA (target-DNA). The immobilization of probe DNA on por-Si facilitates hybridization detection for a small sensing area (approximately
50
×
50
μ
m
2
) with a high detection efficiency. In this study, we fabricated a porous silicon-based DNA microarray (por-Si-microarray) using photolithographic and Si anodizing techniques. We demonstrate that DNA hybridization can be detected on a por-Si-microarray through the analysis of infrared absorption spectral profiles in the region where the vibration modes of the bases appear. This present approach demonstrates that por-Si-microarray in conjugation with infrared microspectroscopy has potential application in DNA sensing chips. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.2751415 |