Loading…

Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions

Recently, a new approach for efficiently generating K -shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a 12 - c...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2008-02, Vol.15 (2)
Main Authors: Qi, N., Sze, H., Failor, B. H., Banister, J., Levine, J. S., Riordan, J. C., Steen, P., Sincerny, P., Lojewski, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3
cites cdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3
container_end_page
container_issue 2
container_start_page
container_title Physics of plasmas
container_volume 15
creator Qi, N.
Sze, H.
Failor, B. H.
Banister, J.
Levine, J. S.
Riordan, J. C.
Steen, P.
Sincerny, P.
Lojewski, D.
description Recently, a new approach for efficiently generating K -shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a 12 - cm diameter, 200 - ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.
doi_str_mv 10.1063/1.2839346
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2839346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmkwyuSyleIOKIBXETcgkmWlkOjMkUejOd_ANfRKntuhCcHV-Dh8_nAPAMUYTjBg5x5NcEEko2wEjjITMOON0d505yhijT_vgIMYXhBBlhRgBdafr1iVv4INeNc7Xi8_3j_kQuwB9G5MufePTCi598rVOvmuHNWx0qF1mvV665AKsdYT9a1XB56z3rVlAv-ybLg44HoK9SjfRHW3nGDxeXc6nN9ns_vp2ejHLDMl5yjgtDOFSMyl5rkvLhbCWCiokdZpxSwqDaMEN0tJWBdJ5RUtcSkutzUssLBmDk01vF5NX0fjkzMJ0betMUjnGiIi8GNTpRpnQxRhcpfrglzqsFEZq_T-F1fZ_gz3b2HXZ9-U_-K0Lv1D1tvoP_23-AoOwgII</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Qi, N. ; Sze, H. ; Failor, B. H. ; Banister, J. ; Levine, J. S. ; Riordan, J. C. ; Steen, P. ; Sincerny, P. ; Lojewski, D.</creator><creatorcontrib>Qi, N. ; Sze, H. ; Failor, B. H. ; Banister, J. ; Levine, J. S. ; Riordan, J. C. ; Steen, P. ; Sincerny, P. ; Lojewski, D.</creatorcontrib><description>Recently, a new approach for efficiently generating K -shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a 12 - cm diameter, 200 - ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2839346</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ARGON ; COMPRESSION RATIO ; FLUORESCENCE ; IMPLOSIONS ; LASERS ; MASS DISTRIBUTION ; PLASMA ; PLASMA DENSITY ; PLASMA DIAGNOSTICS ; RADIATORS ; RAYLEIGH-TAYLOR INSTABILITY ; WAVE FORMS ; X RADIATION ; X-RAY SOURCES</subject><ispartof>Physics of plasmas, 2008-02, Vol.15 (2)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</citedby><cites>FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.2839346$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21103825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, N.</creatorcontrib><creatorcontrib>Sze, H.</creatorcontrib><creatorcontrib>Failor, B. H.</creatorcontrib><creatorcontrib>Banister, J.</creatorcontrib><creatorcontrib>Levine, J. S.</creatorcontrib><creatorcontrib>Riordan, J. C.</creatorcontrib><creatorcontrib>Steen, P.</creatorcontrib><creatorcontrib>Sincerny, P.</creatorcontrib><creatorcontrib>Lojewski, D.</creatorcontrib><title>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</title><title>Physics of plasmas</title><description>Recently, a new approach for efficiently generating K -shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a 12 - cm diameter, 200 - ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ARGON</subject><subject>COMPRESSION RATIO</subject><subject>FLUORESCENCE</subject><subject>IMPLOSIONS</subject><subject>LASERS</subject><subject>MASS DISTRIBUTION</subject><subject>PLASMA</subject><subject>PLASMA DENSITY</subject><subject>PLASMA DIAGNOSTICS</subject><subject>RADIATORS</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>WAVE FORMS</subject><subject>X RADIATION</subject><subject>X-RAY SOURCES</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmkwyuSyleIOKIBXETcgkmWlkOjMkUejOd_ANfRKntuhCcHV-Dh8_nAPAMUYTjBg5x5NcEEko2wEjjITMOON0d505yhijT_vgIMYXhBBlhRgBdafr1iVv4INeNc7Xi8_3j_kQuwB9G5MufePTCi598rVOvmuHNWx0qF1mvV665AKsdYT9a1XB56z3rVlAv-ybLg44HoK9SjfRHW3nGDxeXc6nN9ns_vp2ejHLDMl5yjgtDOFSMyl5rkvLhbCWCiokdZpxSwqDaMEN0tJWBdJ5RUtcSkutzUssLBmDk01vF5NX0fjkzMJ0betMUjnGiIi8GNTpRpnQxRhcpfrglzqsFEZq_T-F1fZ_gz3b2HXZ9-U_-K0Lv1D1tvoP_23-AoOwgII</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Qi, N.</creator><creator>Sze, H.</creator><creator>Failor, B. H.</creator><creator>Banister, J.</creator><creator>Levine, J. S.</creator><creator>Riordan, J. C.</creator><creator>Steen, P.</creator><creator>Sincerny, P.</creator><creator>Lojewski, D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080201</creationdate><title>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</title><author>Qi, N. ; Sze, H. ; Failor, B. H. ; Banister, J. ; Levine, J. S. ; Riordan, J. C. ; Steen, P. ; Sincerny, P. ; Lojewski, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ARGON</topic><topic>COMPRESSION RATIO</topic><topic>FLUORESCENCE</topic><topic>IMPLOSIONS</topic><topic>LASERS</topic><topic>MASS DISTRIBUTION</topic><topic>PLASMA</topic><topic>PLASMA DENSITY</topic><topic>PLASMA DIAGNOSTICS</topic><topic>RADIATORS</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>WAVE FORMS</topic><topic>X RADIATION</topic><topic>X-RAY SOURCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, N.</creatorcontrib><creatorcontrib>Sze, H.</creatorcontrib><creatorcontrib>Failor, B. H.</creatorcontrib><creatorcontrib>Banister, J.</creatorcontrib><creatorcontrib>Levine, J. S.</creatorcontrib><creatorcontrib>Riordan, J. C.</creatorcontrib><creatorcontrib>Steen, P.</creatorcontrib><creatorcontrib>Sincerny, P.</creatorcontrib><creatorcontrib>Lojewski, D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, N.</au><au>Sze, H.</au><au>Failor, B. H.</au><au>Banister, J.</au><au>Levine, J. S.</au><au>Riordan, J. C.</au><au>Steen, P.</au><au>Sincerny, P.</au><au>Lojewski, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</atitle><jtitle>Physics of plasmas</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>15</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Recently, a new approach for efficiently generating K -shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a 12 - cm diameter, 200 - ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.</abstract><cop>United States</cop><doi>10.1063/1.2839346</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2008-02, Vol.15 (2)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_2839346
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ARGON
COMPRESSION RATIO
FLUORESCENCE
IMPLOSIONS
LASERS
MASS DISTRIBUTION
PLASMA
PLASMA DENSITY
PLASMA DIAGNOSTICS
RADIATORS
RAYLEIGH-TAYLOR INSTABILITY
WAVE FORMS
X RADIATION
X-RAY SOURCES
title Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Rayleigh%E2%80%93Taylor%20instability%20mitigation%20in%20large-diameter%20gas%20puff%20Z-pinch%20implosions&rft.jtitle=Physics%20of%20plasmas&rft.au=Qi,%20N.&rft.date=2008-02-01&rft.volume=15&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.2839346&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true