Loading…
Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions
Recently, a new approach for efficiently generating K -shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a 12 - c...
Saved in:
Published in: | Physics of plasmas 2008-02, Vol.15 (2) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 15 |
creator | Qi, N. Sze, H. Failor, B. H. Banister, J. Levine, J. S. Riordan, J. C. Steen, P. Sincerny, P. Lojewski, D. |
description | Recently, a new approach for efficiently generating
K
-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a
12
-
cm
diameter,
200
-
ns
implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch. |
doi_str_mv | 10.1063/1.2839346 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2839346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmkwyuSyleIOKIBXETcgkmWlkOjMkUejOd_ANfRKntuhCcHV-Dh8_nAPAMUYTjBg5x5NcEEko2wEjjITMOON0d505yhijT_vgIMYXhBBlhRgBdafr1iVv4INeNc7Xi8_3j_kQuwB9G5MufePTCi598rVOvmuHNWx0qF1mvV665AKsdYT9a1XB56z3rVlAv-ybLg44HoK9SjfRHW3nGDxeXc6nN9ns_vp2ejHLDMl5yjgtDOFSMyl5rkvLhbCWCiokdZpxSwqDaMEN0tJWBdJ5RUtcSkutzUssLBmDk01vF5NX0fjkzMJ0betMUjnGiIi8GNTpRpnQxRhcpfrglzqsFEZq_T-F1fZ_gz3b2HXZ9-U_-K0Lv1D1tvoP_23-AoOwgII</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Qi, N. ; Sze, H. ; Failor, B. H. ; Banister, J. ; Levine, J. S. ; Riordan, J. C. ; Steen, P. ; Sincerny, P. ; Lojewski, D.</creator><creatorcontrib>Qi, N. ; Sze, H. ; Failor, B. H. ; Banister, J. ; Levine, J. S. ; Riordan, J. C. ; Steen, P. ; Sincerny, P. ; Lojewski, D.</creatorcontrib><description>Recently, a new approach for efficiently generating
K
-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a
12
-
cm
diameter,
200
-
ns
implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2839346</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ARGON ; COMPRESSION RATIO ; FLUORESCENCE ; IMPLOSIONS ; LASERS ; MASS DISTRIBUTION ; PLASMA ; PLASMA DENSITY ; PLASMA DIAGNOSTICS ; RADIATORS ; RAYLEIGH-TAYLOR INSTABILITY ; WAVE FORMS ; X RADIATION ; X-RAY SOURCES</subject><ispartof>Physics of plasmas, 2008-02, Vol.15 (2)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</citedby><cites>FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.2839346$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21103825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, N.</creatorcontrib><creatorcontrib>Sze, H.</creatorcontrib><creatorcontrib>Failor, B. H.</creatorcontrib><creatorcontrib>Banister, J.</creatorcontrib><creatorcontrib>Levine, J. S.</creatorcontrib><creatorcontrib>Riordan, J. C.</creatorcontrib><creatorcontrib>Steen, P.</creatorcontrib><creatorcontrib>Sincerny, P.</creatorcontrib><creatorcontrib>Lojewski, D.</creatorcontrib><title>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</title><title>Physics of plasmas</title><description>Recently, a new approach for efficiently generating
K
-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a
12
-
cm
diameter,
200
-
ns
implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ARGON</subject><subject>COMPRESSION RATIO</subject><subject>FLUORESCENCE</subject><subject>IMPLOSIONS</subject><subject>LASERS</subject><subject>MASS DISTRIBUTION</subject><subject>PLASMA</subject><subject>PLASMA DENSITY</subject><subject>PLASMA DIAGNOSTICS</subject><subject>RADIATORS</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>WAVE FORMS</subject><subject>X RADIATION</subject><subject>X-RAY SOURCES</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmkwyuSyleIOKIBXETcgkmWlkOjMkUejOd_ANfRKntuhCcHV-Dh8_nAPAMUYTjBg5x5NcEEko2wEjjITMOON0d505yhijT_vgIMYXhBBlhRgBdafr1iVv4INeNc7Xi8_3j_kQuwB9G5MufePTCi598rVOvmuHNWx0qF1mvV665AKsdYT9a1XB56z3rVlAv-ybLg44HoK9SjfRHW3nGDxeXc6nN9ns_vp2ejHLDMl5yjgtDOFSMyl5rkvLhbCWCiokdZpxSwqDaMEN0tJWBdJ5RUtcSkutzUssLBmDk01vF5NX0fjkzMJ0betMUjnGiIi8GNTpRpnQxRhcpfrglzqsFEZq_T-F1fZ_gz3b2HXZ9-U_-K0Lv1D1tvoP_23-AoOwgII</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Qi, N.</creator><creator>Sze, H.</creator><creator>Failor, B. H.</creator><creator>Banister, J.</creator><creator>Levine, J. S.</creator><creator>Riordan, J. C.</creator><creator>Steen, P.</creator><creator>Sincerny, P.</creator><creator>Lojewski, D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080201</creationdate><title>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</title><author>Qi, N. ; Sze, H. ; Failor, B. H. ; Banister, J. ; Levine, J. S. ; Riordan, J. C. ; Steen, P. ; Sincerny, P. ; Lojewski, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ARGON</topic><topic>COMPRESSION RATIO</topic><topic>FLUORESCENCE</topic><topic>IMPLOSIONS</topic><topic>LASERS</topic><topic>MASS DISTRIBUTION</topic><topic>PLASMA</topic><topic>PLASMA DENSITY</topic><topic>PLASMA DIAGNOSTICS</topic><topic>RADIATORS</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>WAVE FORMS</topic><topic>X RADIATION</topic><topic>X-RAY SOURCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, N.</creatorcontrib><creatorcontrib>Sze, H.</creatorcontrib><creatorcontrib>Failor, B. H.</creatorcontrib><creatorcontrib>Banister, J.</creatorcontrib><creatorcontrib>Levine, J. S.</creatorcontrib><creatorcontrib>Riordan, J. C.</creatorcontrib><creatorcontrib>Steen, P.</creatorcontrib><creatorcontrib>Sincerny, P.</creatorcontrib><creatorcontrib>Lojewski, D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, N.</au><au>Sze, H.</au><au>Failor, B. H.</au><au>Banister, J.</au><au>Levine, J. S.</au><au>Riordan, J. C.</au><au>Steen, P.</au><au>Sincerny, P.</au><au>Lojewski, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions</atitle><jtitle>Physics of plasmas</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>15</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Recently, a new approach for efficiently generating
K
-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a “pusher-stabilizer-radiator” model. In this paper, direct observations of the Rayleigh–Taylor instability mitigation of a
12
-
cm
diameter,
200
-
ns
implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the “pusher-stabilizer-radiator” structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.</abstract><cop>United States</cop><doi>10.1063/1.2839346</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2008-02, Vol.15 (2) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_2839346 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ARGON COMPRESSION RATIO FLUORESCENCE IMPLOSIONS LASERS MASS DISTRIBUTION PLASMA PLASMA DENSITY PLASMA DIAGNOSTICS RADIATORS RAYLEIGH-TAYLOR INSTABILITY WAVE FORMS X RADIATION X-RAY SOURCES |
title | Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff Z-pinch implosions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Rayleigh%E2%80%93Taylor%20instability%20mitigation%20in%20large-diameter%20gas%20puff%20Z-pinch%20implosions&rft.jtitle=Physics%20of%20plasmas&rft.au=Qi,%20N.&rft.date=2008-02-01&rft.volume=15&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.2839346&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-745c379a69972abd788dd484894ea67d35c0457c0a9df50a2f4b1b9d4dd2b18d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |