Loading…
Impact of incomplete set programing on the performanceof phase change memory cell
Phase change memory (PCM) cells with T-shaped structure using tungsten heater were fabricated and the cell characteristics concerning the programing pulse width were also investigated in this work. The numerical modeling shows the thermal nonuniformity over the active region due to the considerable...
Saved in:
Published in: | Applied physics letters 2008-02, Vol.92 (6), p.062108-062108-3 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phase change memory (PCM) cells with T-shaped structure using tungsten heater were fabricated and the cell characteristics concerning the programing pulse width were also investigated in this work. The numerical modeling shows the thermal nonuniformity over the active region due to the considerable thermal sink of tungsten heater results in the amorphous-phase residues and the incomplete set programing. The experimental results reveal the existence of residual amorphous phase and indicate that the incomplete set programing is the dominant factor to degrade the PCM cell performances, such as the sensing margin and the endurance. The strategies to eliminate the incomplete set programing are the optimization in programing pulse width and the replacement of the tungsten heater with higher resistivity metal such as TiAlN. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2839379 |