Loading…

Ultrafast transformation of graphite to diamond: An ab initio studyof graphite under shock compression

We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2008-05, Vol.128 (18), p.184701-184701-6
Main Authors: Mundy, Christopher J., Curioni, Alessandro, Goldman, Nir, Will Kuo, I.-F., Reed, Evan J., Fried, Laurence E., Ianuzzi, Marcella
Format: Article
Language:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-scitation_primary_10_1063_1_2913201Ultrafast_transforma3
container_end_page 184701-6
container_issue 18
container_start_page 184701
container_title The Journal of chemical physics
container_volume 128
creator Mundy, Christopher J.
Curioni, Alessandro
Goldman, Nir
Will Kuo, I.-F.
Reed, Evan J.
Fried, Laurence E.
Ianuzzi, Marcella
description We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 km ∕ s (longitudinal stress > 130 GPa ), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
doi_str_mv 10.1063/1.2913201
format article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2913201Ultrafast_transforma</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2913201Ultrafast_transforma</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_1_2913201Ultrafast_transforma3</originalsourceid><addsrcrecordid>eNqlj0FuwjAQRa0KJEJhwQ3mAoGZpEqaLipVCNQDtGvLjeNimtiRxyy4PQEh6J7V33y9_74QC8IlYZGvaJlVlGdITyIhfK3SsqhwJBLEjNKqwGIipsx7RKQye0mE-W5jUEZxhCEdGx86Fa134A38BtXvbGwgetBWdd7pN_hwoH7AOju0gONBH_83D043AXjn6z-ofdeHhnmgzcTYqJab-TWfxft287X-TLm28bIn-2A7FY6SUJ6fSJLXJzdDeTfMHwacABFSYMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast transformation of graphite to diamond: An ab initio studyof graphite under shock compression</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mundy, Christopher J. ; Curioni, Alessandro ; Goldman, Nir ; Will Kuo, I.-F. ; Reed, Evan J. ; Fried, Laurence E. ; Ianuzzi, Marcella</creator><creatorcontrib>Mundy, Christopher J. ; Curioni, Alessandro ; Goldman, Nir ; Will Kuo, I.-F. ; Reed, Evan J. ; Fried, Laurence E. ; Ianuzzi, Marcella</creatorcontrib><description>We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 km ∕ s (longitudinal stress &gt; 130 GPa ), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2913201</identifier><identifier>CODEN: JCPSA6</identifier><publisher>American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2008-05, Vol.128 (18), p.184701-184701-6</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-scitation_primary_10_1063_1_2913201Ultrafast_transforma3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,778,780,791,27901,27902</link.rule.ids></links><search><creatorcontrib>Mundy, Christopher J.</creatorcontrib><creatorcontrib>Curioni, Alessandro</creatorcontrib><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Will Kuo, I.-F.</creatorcontrib><creatorcontrib>Reed, Evan J.</creatorcontrib><creatorcontrib>Fried, Laurence E.</creatorcontrib><creatorcontrib>Ianuzzi, Marcella</creatorcontrib><title>Ultrafast transformation of graphite to diamond: An ab initio studyof graphite under shock compression</title><title>The Journal of chemical physics</title><description>We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 km ∕ s (longitudinal stress &gt; 130 GPa ), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqlj0FuwjAQRa0KJEJhwQ3mAoGZpEqaLipVCNQDtGvLjeNimtiRxyy4PQEh6J7V33y9_74QC8IlYZGvaJlVlGdITyIhfK3SsqhwJBLEjNKqwGIipsx7RKQye0mE-W5jUEZxhCEdGx86Fa134A38BtXvbGwgetBWdd7pN_hwoH7AOju0gONBH_83D043AXjn6z-ofdeHhnmgzcTYqJab-TWfxft287X-TLm28bIn-2A7FY6SUJ6fSJLXJzdDeTfMHwacABFSYMw</recordid><startdate>20080508</startdate><enddate>20080508</enddate><creator>Mundy, Christopher J.</creator><creator>Curioni, Alessandro</creator><creator>Goldman, Nir</creator><creator>Will Kuo, I.-F.</creator><creator>Reed, Evan J.</creator><creator>Fried, Laurence E.</creator><creator>Ianuzzi, Marcella</creator><general>American Institute of Physics</general><scope/></search><sort><creationdate>20080508</creationdate><title>Ultrafast transformation of graphite to diamond: An ab initio studyof graphite under shock compression</title><author>Mundy, Christopher J. ; Curioni, Alessandro ; Goldman, Nir ; Will Kuo, I.-F. ; Reed, Evan J. ; Fried, Laurence E. ; Ianuzzi, Marcella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_1_2913201Ultrafast_transforma3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mundy, Christopher J.</creatorcontrib><creatorcontrib>Curioni, Alessandro</creatorcontrib><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Will Kuo, I.-F.</creatorcontrib><creatorcontrib>Reed, Evan J.</creatorcontrib><creatorcontrib>Fried, Laurence E.</creatorcontrib><creatorcontrib>Ianuzzi, Marcella</creatorcontrib><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mundy, Christopher J.</au><au>Curioni, Alessandro</au><au>Goldman, Nir</au><au>Will Kuo, I.-F.</au><au>Reed, Evan J.</au><au>Fried, Laurence E.</au><au>Ianuzzi, Marcella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast transformation of graphite to diamond: An ab initio studyof graphite under shock compression</atitle><jtitle>The Journal of chemical physics</jtitle><date>2008-05-08</date><risdate>2008</risdate><volume>128</volume><issue>18</issue><spage>184701</spage><epage>184701-6</epage><pages>184701-184701-6</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 km ∕ s (longitudinal stress &gt; 130 GPa ), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2913201</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2008-05, Vol.128 (18), p.184701-184701-6
issn 0021-9606
1089-7690
language
recordid cdi_scitation_primary_10_1063_1_2913201Ultrafast_transforma
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Ultrafast transformation of graphite to diamond: An ab initio studyof graphite under shock compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20transformation%20of%20graphite%20to%20diamond:%20An%20ab%20initio%20studyof%20graphite%20under%20shock%20compression&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mundy,%20Christopher%20J.&rft.date=2008-05-08&rft.volume=128&rft.issue=18&rft.spage=184701&rft.epage=184701-6&rft.pages=184701-184701-6&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2913201&rft_dat=%3Cscitation%3Escitation_primary_10_1063_1_2913201Ultrafast_transforma%3C/scitation%3E%3Cgrp_id%3Ecdi_FETCH-scitation_primary_10_1063_1_2913201Ultrafast_transforma3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true