Loading…

An exchange-Coulomb model potential energy surface for the Ne–CO interaction. I. Calculation of Ne–CO van der Waals spectra

Exchange-Coulomb model potential energy surfaces have been developed for the Ne–CO interaction. The initial model is a three-dimensional potential energy surface based upon computed Heitler–London interaction energies and literature results for the long-range induction and dispersion energies, all a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2009-06, Vol.130 (24), p.244310-244310-16
Main Authors: Dham, Ashok K., McCourt, Frederick R. W., Meath, William J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exchange-Coulomb model potential energy surfaces have been developed for the Ne–CO interaction. The initial model is a three-dimensional potential energy surface based upon computed Heitler–London interaction energies and literature results for the long-range induction and dispersion energies, all as functions of interspecies distance, the orientation of CO relative to the interspecies axis, and the bond length of the CO molecule. Both a rigid-rotor model potential energy surface, obtained by setting the CO bond length equal to its experimental spectroscopic equilibrium value, and a vibrationally averaged model potential energy surface, obtained by averaging the stretching dependence over the ground vibrational motion of the CO molecule, have been constructed from the full data set. Adjustable parameters in each model potential energy surface have been determined through fitting a selected subset of pure rotational transition frequencies calculated for the N 20 e – C 12 O 12 isotopolog to precisely known experimental values. Both potential energy surfaces provide calculated results for a wide range of available experimental microwave, millimeter-wave, and midinfrared Ne–CO transition frequencies that are generally far superior to those obtained using the best current literature potential energy surfaces. The vibrationally averaged CO ground state potential energy surface, employed together with a potential energy surface obtained from it by replacing the ground vibrational state average of the CO stretching dependence of the potential energy surface by an average over the first excited CO vibrational state, has been found to be particularly useful for computing and/or interpreting mid-IR transition frequencies in the Ne–CO dimer.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3157169