Loading…

Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes

We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 ° C and further annealed in Ar / H 2 at 900 ° C ; monolayer ribbons were selected for the fabrication of electronic devic...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2009-12, Vol.95 (25), p.253108-253108-3
Main Authors: Sinitskii, Alexander, Fursina, Alexandra A., Kosynkin, Dmitry V., Higginbotham, Amanda L., Natelson, Douglas, Tour, James M.
Format: Article
Language:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3
container_end_page 253108-3
container_issue 25
container_start_page 253108
container_title Applied physics letters
container_volume 95
creator Sinitskii, Alexander
Fursina, Alexandra A.
Kosynkin, Dmitry V.
Higginbotham, Amanda L.
Natelson, Douglas
Tour, James M.
description We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 ° C and further annealed in Ar / H 2 at 900 ° C ; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on Si / SiO 2 substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs ( ∼ 35   S / cm ) and mobility of charge carriers ( 0.5 - 3   cm 2 / V s ) are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh H 2 SO 4 / KMnO 4 used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.
doi_str_mv 10.1063/1.3276912
format article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3276912Electronic_transport</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3</originalsourceid><addsrcrecordid>eNqlj81OwzAQhC1EJcLPgTfYF0jxxmpCL1xQEQ_A3XJct3GV7Fpr5xCenoIqeABOo5FmRt8o9Yh6jbo1T7g2TddusblSFequqw3i87WqtNambrcbvFG3OZ_OdtMYU6lhNwZfhCl6KOIoJ5YCkWBi4tEtQeAoLg2BApAjltj3TBmS8H72Yd8v4IcwRe9GmOkzphTpCHwA7-Qc_OmUuQ_5Xq0Obszh4aJ36uVt9_H6XmcfiyuRySaJk5PForbfXyzay5c_RvvLaP498AWQ12J9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Sinitskii, Alexander ; Fursina, Alexandra A. ; Kosynkin, Dmitry V. ; Higginbotham, Amanda L. ; Natelson, Douglas ; Tour, James M.</creator><creatorcontrib>Sinitskii, Alexander ; Fursina, Alexandra A. ; Kosynkin, Dmitry V. ; Higginbotham, Amanda L. ; Natelson, Douglas ; Tour, James M.</creatorcontrib><description>We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 ° C and further annealed in Ar / H 2 at 900 ° C ; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on Si / SiO 2 substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs ( ∼ 35   S / cm ) and mobility of charge carriers ( 0.5 - 3   cm 2 / V s ) are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh H 2 SO 4 / KMnO 4 used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3276912</identifier><identifier>CODEN: APPLAB</identifier><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2009-12, Vol.95 (25), p.253108-253108-3</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3276912$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>Fursina, Alexandra A.</creatorcontrib><creatorcontrib>Kosynkin, Dmitry V.</creatorcontrib><creatorcontrib>Higginbotham, Amanda L.</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</title><title>Applied physics letters</title><description>We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 ° C and further annealed in Ar / H 2 at 900 ° C ; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on Si / SiO 2 substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs ( ∼ 35   S / cm ) and mobility of charge carriers ( 0.5 - 3   cm 2 / V s ) are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh H 2 SO 4 / KMnO 4 used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqlj81OwzAQhC1EJcLPgTfYF0jxxmpCL1xQEQ_A3XJct3GV7Fpr5xCenoIqeABOo5FmRt8o9Yh6jbo1T7g2TddusblSFequqw3i87WqtNambrcbvFG3OZ_OdtMYU6lhNwZfhCl6KOIoJ5YCkWBi4tEtQeAoLg2BApAjltj3TBmS8H72Yd8v4IcwRe9GmOkzphTpCHwA7-Qc_OmUuQ_5Xq0Obszh4aJ36uVt9_H6XmcfiyuRySaJk5PForbfXyzay5c_RvvLaP498AWQ12J9</recordid><startdate>20091223</startdate><enddate>20091223</enddate><creator>Sinitskii, Alexander</creator><creator>Fursina, Alexandra A.</creator><creator>Kosynkin, Dmitry V.</creator><creator>Higginbotham, Amanda L.</creator><creator>Natelson, Douglas</creator><creator>Tour, James M.</creator><general>American Institute of Physics</general><scope/></search><sort><creationdate>20091223</creationdate><title>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</title><author>Sinitskii, Alexander ; Fursina, Alexandra A. ; Kosynkin, Dmitry V. ; Higginbotham, Amanda L. ; Natelson, Douglas ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>Fursina, Alexandra A.</creatorcontrib><creatorcontrib>Kosynkin, Dmitry V.</creatorcontrib><creatorcontrib>Higginbotham, Amanda L.</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitskii, Alexander</au><au>Fursina, Alexandra A.</au><au>Kosynkin, Dmitry V.</au><au>Higginbotham, Amanda L.</au><au>Natelson, Douglas</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</atitle><jtitle>Applied physics letters</jtitle><date>2009-12-23</date><risdate>2009</risdate><volume>95</volume><issue>25</issue><spage>253108</spage><epage>253108-3</epage><pages>253108-253108-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 ° C and further annealed in Ar / H 2 at 900 ° C ; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on Si / SiO 2 substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs ( ∼ 35   S / cm ) and mobility of charge carriers ( 0.5 - 3   cm 2 / V s ) are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh H 2 SO 4 / KMnO 4 used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3276912</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2009-12, Vol.95 (25), p.253108-253108-3
issn 0003-6951
1077-3118
language
recordid cdi_scitation_primary_10_1063_1_3276912Electronic_transport
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20monolayer%20graphene%20nanoribbons%20producedby%20chemical%20unzipping%20of%20carbon%20nanotubes&rft.jtitle=Applied%20physics%20letters&rft.au=Sinitskii,%20Alexander&rft.date=2009-12-23&rft.volume=95&rft.issue=25&rft.spage=253108&rft.epage=253108-3&rft.pages=253108-253108-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3276912&rft_dat=%3Cscitation%3Eapl%3C/scitation%3E%3Cgrp_id%3Ecdi_FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true