Loading…
Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes
We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at 95 ° C and further annealed in Ar / H 2 at 900 ° C ; monolayer ribbons were selected for the fabrication of electronic devic...
Saved in:
Published in: | Applied physics letters 2009-12, Vol.95 (25), p.253108-253108-3 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3 |
container_end_page | 253108-3 |
container_issue | 25 |
container_start_page | 253108 |
container_title | Applied physics letters |
container_volume | 95 |
creator | Sinitskii, Alexander Fursina, Alexandra A. Kosynkin, Dmitry V. Higginbotham, Amanda L. Natelson, Douglas Tour, James M. |
description | We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at
95
°
C
and further annealed in
Ar
/
H
2
at
900
°
C
; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on
Si
/
SiO
2
substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs
(
∼
35
S
/
cm
)
and mobility of charge carriers
(
0.5
-
3
cm
2
/
V
s
)
are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh
H
2
SO
4
/
KMnO
4
used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure. |
doi_str_mv | 10.1063/1.3276912 |
format | article |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3276912Electronic_transport</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3</originalsourceid><addsrcrecordid>eNqlj81OwzAQhC1EJcLPgTfYF0jxxmpCL1xQEQ_A3XJct3GV7Fpr5xCenoIqeABOo5FmRt8o9Yh6jbo1T7g2TddusblSFequqw3i87WqtNambrcbvFG3OZ_OdtMYU6lhNwZfhCl6KOIoJ5YCkWBi4tEtQeAoLg2BApAjltj3TBmS8H72Yd8v4IcwRe9GmOkzphTpCHwA7-Qc_OmUuQ_5Xq0Obszh4aJ36uVt9_H6XmcfiyuRySaJk5PForbfXyzay5c_RvvLaP498AWQ12J9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Sinitskii, Alexander ; Fursina, Alexandra A. ; Kosynkin, Dmitry V. ; Higginbotham, Amanda L. ; Natelson, Douglas ; Tour, James M.</creator><creatorcontrib>Sinitskii, Alexander ; Fursina, Alexandra A. ; Kosynkin, Dmitry V. ; Higginbotham, Amanda L. ; Natelson, Douglas ; Tour, James M.</creatorcontrib><description>We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at
95
°
C
and further annealed in
Ar
/
H
2
at
900
°
C
; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on
Si
/
SiO
2
substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs
(
∼
35
S
/
cm
)
and mobility of charge carriers
(
0.5
-
3
cm
2
/
V
s
)
are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh
H
2
SO
4
/
KMnO
4
used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3276912</identifier><identifier>CODEN: APPLAB</identifier><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2009-12, Vol.95 (25), p.253108-253108-3</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3276912$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>Fursina, Alexandra A.</creatorcontrib><creatorcontrib>Kosynkin, Dmitry V.</creatorcontrib><creatorcontrib>Higginbotham, Amanda L.</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</title><title>Applied physics letters</title><description>We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at
95
°
C
and further annealed in
Ar
/
H
2
at
900
°
C
; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on
Si
/
SiO
2
substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs
(
∼
35
S
/
cm
)
and mobility of charge carriers
(
0.5
-
3
cm
2
/
V
s
)
are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh
H
2
SO
4
/
KMnO
4
used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqlj81OwzAQhC1EJcLPgTfYF0jxxmpCL1xQEQ_A3XJct3GV7Fpr5xCenoIqeABOo5FmRt8o9Yh6jbo1T7g2TddusblSFequqw3i87WqtNambrcbvFG3OZ_OdtMYU6lhNwZfhCl6KOIoJ5YCkWBi4tEtQeAoLg2BApAjltj3TBmS8H72Yd8v4IcwRe9GmOkzphTpCHwA7-Qc_OmUuQ_5Xq0Obszh4aJ36uVt9_H6XmcfiyuRySaJk5PForbfXyzay5c_RvvLaP498AWQ12J9</recordid><startdate>20091223</startdate><enddate>20091223</enddate><creator>Sinitskii, Alexander</creator><creator>Fursina, Alexandra A.</creator><creator>Kosynkin, Dmitry V.</creator><creator>Higginbotham, Amanda L.</creator><creator>Natelson, Douglas</creator><creator>Tour, James M.</creator><general>American Institute of Physics</general><scope/></search><sort><creationdate>20091223</creationdate><title>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</title><author>Sinitskii, Alexander ; Fursina, Alexandra A. ; Kosynkin, Dmitry V. ; Higginbotham, Amanda L. ; Natelson, Douglas ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>Fursina, Alexandra A.</creatorcontrib><creatorcontrib>Kosynkin, Dmitry V.</creatorcontrib><creatorcontrib>Higginbotham, Amanda L.</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitskii, Alexander</au><au>Fursina, Alexandra A.</au><au>Kosynkin, Dmitry V.</au><au>Higginbotham, Amanda L.</au><au>Natelson, Douglas</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes</atitle><jtitle>Applied physics letters</jtitle><date>2009-12-23</date><risdate>2009</risdate><volume>95</volume><issue>25</issue><spage>253108</spage><epage>253108-3</epage><pages>253108-253108-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on the structural and electrical properties of graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes. GNRs were reduced by hydrazine at
95
°
C
and further annealed in
Ar
/
H
2
at
900
°
C
; monolayer ribbons were selected for the fabrication of electronic devices. GNR devices on
Si
/
SiO
2
substrates exhibit an ambipolar electric field effect typical for graphene. The conductivity of monolayer GNRs
(
∼
35
S
/
cm
)
and mobility of charge carriers
(
0.5
-
3
cm
2
/
V
s
)
are less than the conductivity and mobility of pristine graphene, which could be explained by oxidative damage caused by the harsh
H
2
SO
4
/
KMnO
4
used to make GNRs. The resistance of GNR devices increases by about three orders of magnitude upon cooling from 300 to 20 K. The resistance/temperature data is consistent with the variable range hopping mechanism, which, along with the microscopy data, suggests that the GNRs have a nonuniform structure.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3276912</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2009-12, Vol.95 (25), p.253108-253108-3 |
issn | 0003-6951 1077-3118 |
language | |
recordid | cdi_scitation_primary_10_1063_1_3276912Electronic_transport |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
title | Electronic transport in monolayer graphene nanoribbons producedby chemical unzipping of carbon nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20monolayer%20graphene%20nanoribbons%20producedby%20chemical%20unzipping%20of%20carbon%20nanotubes&rft.jtitle=Applied%20physics%20letters&rft.au=Sinitskii,%20Alexander&rft.date=2009-12-23&rft.volume=95&rft.issue=25&rft.spage=253108&rft.epage=253108-3&rft.pages=253108-253108-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3276912&rft_dat=%3Cscitation%3Eapl%3C/scitation%3E%3Cgrp_id%3Ecdi_FETCH-scitation_primary_10_1063_1_3276912Electronic_transport3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |