Loading…

Representations of quantum superalgebra U q [gl(2|1)] in a coherent state basis and generalization

The coherent state method has proved to be useful in quantum physics and mathematics. This method, more precisely, the vector coherent state method, has been used by some authors to construct representations of superalgebras but almost, to our knowledge, it has not yet been extended to quantum super...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2011-12, Vol.52 (12), p.123512-123512-12
Main Authors: Kien, Nguyen Cong, Ky, Nguyen Anh, Nam, Le Ba, Van, Nguyen Thi Hong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3
cites cdi_FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3
container_end_page 123512-12
container_issue 12
container_start_page 123512
container_title Journal of mathematical physics
container_volume 52
creator Kien, Nguyen Cong
Ky, Nguyen Anh
Nam, Le Ba
Van, Nguyen Thi Hong
description The coherent state method has proved to be useful in quantum physics and mathematics. This method, more precisely, the vector coherent state method, has been used by some authors to construct representations of superalgebras but almost, to our knowledge, it has not yet been extended to quantum superalgebras, except U q [osp(1|2)], one of the smallest quantum superalgebras. In this article the method is applied to a bigger quantum superalgebra, namely U q [gl(2|1)], in constructing q–boson-fermion realizations and finite-dimensional representations which, when irreducible, are classified into typical and nontypical representations. This construction leads to a more general class of q–boson-fermion realizations and finite-dimensional representations of U q [gl(2|1)] and, thus, at q = 1, of gl(2|1). Both gl(2|1) and U q [gl(2|1)] have found different physics applications, therefore, it is meaningful to construct their representations.
doi_str_mv 10.1063/1.3671330
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3671330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAYRoMoOKcX_oNcOqEzX03SG0HG_ICBIO5KJKTpm1nZ2i7pBMUfb-cGgjKvcnPO4c2D0CklQ0okv6BDLhXlnOyhHiU6S5RM9T7qEcJYwoTWh-goxldCKNVC9FD-AE2ACFVr27KuIq49Xq5s1a4WOK4aCHY-gzxYPMVL_DSbn7FPOnjGZYUtdvULhM7EsZMB5zaWEduqwDOo1mL58d08RgfeziOcbN8-ml6PH0e3yeT-5m50NUkcT0WbUM6EEsA444VQqXUiy3juQCrGwDGvU3DEKeJTojwTmZRaCm19kbssy4nlfTTYdF2oYwzgTRPKhQ3vhhKzHsdQsx2nYy83bHTl5ue74V8LmdqbZRc43xV4q8OPbJrC_wf_Pe0LSbiI0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representations of quantum superalgebra U q [gl(2|1)] in a coherent state basis and generalization</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kien, Nguyen Cong ; Ky, Nguyen Anh ; Nam, Le Ba ; Van, Nguyen Thi Hong</creator><creatorcontrib>Kien, Nguyen Cong ; Ky, Nguyen Anh ; Nam, Le Ba ; Van, Nguyen Thi Hong</creatorcontrib><description>The coherent state method has proved to be useful in quantum physics and mathematics. This method, more precisely, the vector coherent state method, has been used by some authors to construct representations of superalgebras but almost, to our knowledge, it has not yet been extended to quantum superalgebras, except U q [osp(1|2)], one of the smallest quantum superalgebras. In this article the method is applied to a bigger quantum superalgebra, namely U q [gl(2|1)], in constructing q–boson-fermion realizations and finite-dimensional representations which, when irreducible, are classified into typical and nontypical representations. This construction leads to a more general class of q–boson-fermion realizations and finite-dimensional representations of U q [gl(2|1)] and, thus, at q = 1, of gl(2|1). Both gl(2|1) and U q [gl(2|1)] have found different physics applications, therefore, it is meaningful to construct their representations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3671330</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of mathematical physics, 2011-12, Vol.52 (12), p.123512-123512-12</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3</citedby><cites>FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3671330$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Kien, Nguyen Cong</creatorcontrib><creatorcontrib>Ky, Nguyen Anh</creatorcontrib><creatorcontrib>Nam, Le Ba</creatorcontrib><creatorcontrib>Van, Nguyen Thi Hong</creatorcontrib><title>Representations of quantum superalgebra U q [gl(2|1)] in a coherent state basis and generalization</title><title>Journal of mathematical physics</title><description>The coherent state method has proved to be useful in quantum physics and mathematics. This method, more precisely, the vector coherent state method, has been used by some authors to construct representations of superalgebras but almost, to our knowledge, it has not yet been extended to quantum superalgebras, except U q [osp(1|2)], one of the smallest quantum superalgebras. In this article the method is applied to a bigger quantum superalgebra, namely U q [gl(2|1)], in constructing q–boson-fermion realizations and finite-dimensional representations which, when irreducible, are classified into typical and nontypical representations. This construction leads to a more general class of q–boson-fermion realizations and finite-dimensional representations of U q [gl(2|1)] and, thus, at q = 1, of gl(2|1). Both gl(2|1) and U q [gl(2|1)] have found different physics applications, therefore, it is meaningful to construct their representations.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYRoMoOKcX_oNcOqEzX03SG0HG_ICBIO5KJKTpm1nZ2i7pBMUfb-cGgjKvcnPO4c2D0CklQ0okv6BDLhXlnOyhHiU6S5RM9T7qEcJYwoTWh-goxldCKNVC9FD-AE2ACFVr27KuIq49Xq5s1a4WOK4aCHY-gzxYPMVL_DSbn7FPOnjGZYUtdvULhM7EsZMB5zaWEduqwDOo1mL58d08RgfeziOcbN8-ml6PH0e3yeT-5m50NUkcT0WbUM6EEsA444VQqXUiy3juQCrGwDGvU3DEKeJTojwTmZRaCm19kbssy4nlfTTYdF2oYwzgTRPKhQ3vhhKzHsdQsx2nYy83bHTl5ue74V8LmdqbZRc43xV4q8OPbJrC_wf_Pe0LSbiI0Q</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kien, Nguyen Cong</creator><creator>Ky, Nguyen Anh</creator><creator>Nam, Le Ba</creator><creator>Van, Nguyen Thi Hong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111201</creationdate><title>Representations of quantum superalgebra U q [gl(2|1)] in a coherent state basis and generalization</title><author>Kien, Nguyen Cong ; Ky, Nguyen Anh ; Nam, Le Ba ; Van, Nguyen Thi Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kien, Nguyen Cong</creatorcontrib><creatorcontrib>Ky, Nguyen Anh</creatorcontrib><creatorcontrib>Nam, Le Ba</creatorcontrib><creatorcontrib>Van, Nguyen Thi Hong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kien, Nguyen Cong</au><au>Ky, Nguyen Anh</au><au>Nam, Le Ba</au><au>Van, Nguyen Thi Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of quantum superalgebra U q [gl(2|1)] in a coherent state basis and generalization</atitle><jtitle>Journal of mathematical physics</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>52</volume><issue>12</issue><spage>123512</spage><epage>123512-12</epage><pages>123512-123512-12</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The coherent state method has proved to be useful in quantum physics and mathematics. This method, more precisely, the vector coherent state method, has been used by some authors to construct representations of superalgebras but almost, to our knowledge, it has not yet been extended to quantum superalgebras, except U q [osp(1|2)], one of the smallest quantum superalgebras. In this article the method is applied to a bigger quantum superalgebra, namely U q [gl(2|1)], in constructing q–boson-fermion realizations and finite-dimensional representations which, when irreducible, are classified into typical and nontypical representations. This construction leads to a more general class of q–boson-fermion realizations and finite-dimensional representations of U q [gl(2|1)] and, thus, at q = 1, of gl(2|1). Both gl(2|1) and U q [gl(2|1)] have found different physics applications, therefore, it is meaningful to construct their representations.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3671330</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2011-12, Vol.52 (12), p.123512-123512-12
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_3671330
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Representations of quantum superalgebra U q [gl(2|1)] in a coherent state basis and generalization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20quantum%20superalgebra%20U%20q%20%5Bgl(2%7C1)%5D%20in%20a%20coherent%20state%20basis%20and%20generalization&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kien,%20Nguyen%20Cong&rft.date=2011-12-01&rft.volume=52&rft.issue=12&rft.spage=123512&rft.epage=123512-12&rft.pages=123512-123512-12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3671330&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-132474e2323d475ac4993bce6722ec2f85ec0c70f507f249668648afdbc99b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true