Loading…
Differential-algebraic and bi-Hamiltonian integrability analysis of the Riemann hierarchy revisited
A differential-algebraic approach to studying the Lax integrability of the generalized Riemann type hydrodynamic hierarchy is revisited and its new Lax representation is constructed in exact form. The bi-Hamiltonian integrability of the generalized Riemann type hierarchy is discussed by means of the...
Saved in:
Published in: | Journal of mathematical physics 2012-10, Vol.53 (10) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A differential-algebraic approach to studying the Lax integrability of the generalized Riemann type hydrodynamic hierarchy is revisited and its new Lax representation is constructed in exact form. The bi-Hamiltonian integrability of the generalized Riemann type hierarchy is discussed by means of the gradient-holonomic and symplectic methods and the related compatible Poissonian structures for N = 3 and N = 4 are constructed. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4761821 |