Loading…

Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions

Collimation of positrons produced by laser-solid interactions has been observed using an externally applied axial magnetic field. The collimation leads to a narrow divergence positron beam, with an equivalent full width at half maximum beam divergence angle of 4° vs the un-collimated divergence of a...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2014-04, Vol.21 (4)
Main Authors: Chen, Hui, Fiksel, G., Barnak, D., Chang, P.-Y., Heeter, R. F., Link, A., Meyerhofer, D. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collimation of positrons produced by laser-solid interactions has been observed using an externally applied axial magnetic field. The collimation leads to a narrow divergence positron beam, with an equivalent full width at half maximum beam divergence angle of 4° vs the un-collimated divergence of about 20°. A fraction of the laser-produced relativistic electrons with energies close to those of the positrons is collimated, so the charge imbalance ratio (ne−/ne+) in the co-propagating collimated electron-positron jet is reduced from ∼100 (no collimation) to ∼2.5 (with collimation). The positron density in the collimated beam increased from 5 × 107 cm−3 to 1.9 × 109 cm−3, measured at the 0.6 m from the source. This is a significant step towards the grand challenge of making a charge neutral electron-positron pair plasma jet in the laboratory.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4873711