Loading…

Femtogram scale nanomechanical resonators embedded in a double-slot photonic crystal nanobeam cavity

An optomechanical device that contains a nanomechanical resonator with an ultralow effective mass of 6.42 fg is designed and demonstrated. The femtogram scale nanomechanical resonator is embedded in a double-slot photonic crystal nanobeam cavity. Optical resonance provides efficient readout of the n...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-02, Vol.108 (5)
Main Authors: Zhang, He, Zeng, Cheng, Chen, Daigao, Li, Miaofeng, Wang, Yi, Huang, Qingzhong, Xiao, Xi, Xia, Jinsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An optomechanical device that contains a nanomechanical resonator with an ultralow effective mass of 6.42 fg is designed and demonstrated. The femtogram scale nanomechanical resonator is embedded in a double-slot photonic crystal nanobeam cavity. Optical resonance provides efficient readout of the nanomechanical resonator movements. The fabricated device is optically and mechanically characterized in atmosphere. In the measured radio-frequency power spectral density, a peak at 3.928 GHz is identified to be the mechanical mode with an effective mass of 6.42 fg. The measured room-temperature mechanical Q-factor is 1255, and a displacement sensitivity of 0.13 fm/ Hz , which is 22 times beyond the standard quantum limit, is obtained. These demonstrated on-chip integrated optomechanical devices combining high Q-factor optical cavities and nanomechanical resonators with ultralow effective masses are promising in ultrasensitive measurements.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4941398