Loading…
First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions
Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable...
Saved in:
Published in: | AIP advances 2016-02, Vol.6 (2), p.025002-025002-9 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3 |
container_end_page | 025002-9 |
container_issue | 2 |
container_start_page | 025002 |
container_title | AIP advances |
container_volume | 6 |
creator | Koller, C. M. Koutná, N. Ramm, J. Kolozsvári, S. Paulitsch, J. Holec, D. Mayrhofer, P. H. |
description | Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition. |
doi_str_mv | 10.1063/1.4941573 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4941573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60b6b426b68646bb81682032e1578c0d</doaj_id><sourcerecordid>2121873727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</originalsourceid><addsrcrecordid>eNqdkc1OAyEQxzdGE0314Bts4kVNqgywLHs0jR9NmvSiZ8KyYGnWZQXW2Dfw7CP6JFLbVM_OgZnM_OYPzGTZKaArQIxcwxWtKBQl2cuOMBR8TDBm-3_iw-wkhCVKRitAnB5lr3fWh5j33nbK9q0OeYhDY5N3XR4XOrcvvVQxdybvne1i3mijVdyV-4UMOvXI2rY2rtbc-U37PvHw9fH5foHnJA-utc36HKJ1XTjODoxsgz7Z-lH2dHf7OHkYz-b308nNbKwIJWRMCBSUE8VQWUtsQCOmONMKIUCI4yKlgBqQmFa4oUVBKWdGGkIqXpcaGzLKphvdxsmlSB98kX4lnLTiJ-H8s5A-WtVqwVDNaopZzTijrK45MI4RwTrNkivUJK2zjVbv3eugQxRLN_guPV9gwMBLUuIyURcbSnkXgtdmdysgsV6QALFdUGIvN2xQNsr1YP4Hvzn_C4q-MeQb2ricYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121873727</pqid></control><display><type>article</type><title>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Koller, C. M. ; Koutná, N. ; Ramm, J. ; Kolozsvári, S. ; Paulitsch, J. ; Holec, D. ; Mayrhofer, P. H.</creator><creatorcontrib>Koller, C. M. ; Koutná, N. ; Ramm, J. ; Kolozsvári, S. ; Paulitsch, J. ; Holec, D. ; Mayrhofer, P. H.</creatorcontrib><description>Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4941573</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Density functional theory ; Energy of formation ; First principles ; Free energy ; Heat of formation ; Phase composition ; Phase stability ; Physical vapor deposition ; Point defects ; Solid solutions</subject><ispartof>AIP advances, 2016-02, Vol.6 (2), p.025002-025002-9</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</citedby><cites>FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</cites><orcidid>0000-0001-7901-4736 ; 0000-0002-3397-7681 ; 0000-0001-7328-9333 ; 0000-0003-0410-9364 ; 0000-0002-3516-1061 ; 0000-0001-7314-5938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4941573$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27867,27901,27902,76151</link.rule.ids></links><search><creatorcontrib>Koller, C. M.</creatorcontrib><creatorcontrib>Koutná, N.</creatorcontrib><creatorcontrib>Ramm, J.</creatorcontrib><creatorcontrib>Kolozsvári, S.</creatorcontrib><creatorcontrib>Paulitsch, J.</creatorcontrib><creatorcontrib>Holec, D.</creatorcontrib><creatorcontrib>Mayrhofer, P. H.</creatorcontrib><title>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</title><title>AIP advances</title><description>Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.</description><subject>Aluminum oxide</subject><subject>Density functional theory</subject><subject>Energy of formation</subject><subject>First principles</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Phase composition</subject><subject>Phase stability</subject><subject>Physical vapor deposition</subject><subject>Point defects</subject><subject>Solid solutions</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkc1OAyEQxzdGE0314Bts4kVNqgywLHs0jR9NmvSiZ8KyYGnWZQXW2Dfw7CP6JFLbVM_OgZnM_OYPzGTZKaArQIxcwxWtKBQl2cuOMBR8TDBm-3_iw-wkhCVKRitAnB5lr3fWh5j33nbK9q0OeYhDY5N3XR4XOrcvvVQxdybvne1i3mijVdyV-4UMOvXI2rY2rtbc-U37PvHw9fH5foHnJA-utc36HKJ1XTjODoxsgz7Z-lH2dHf7OHkYz-b308nNbKwIJWRMCBSUE8VQWUtsQCOmONMKIUCI4yKlgBqQmFa4oUVBKWdGGkIqXpcaGzLKphvdxsmlSB98kX4lnLTiJ-H8s5A-WtVqwVDNaopZzTijrK45MI4RwTrNkivUJK2zjVbv3eugQxRLN_guPV9gwMBLUuIyURcbSnkXgtdmdysgsV6QALFdUGIvN2xQNsr1YP4Hvzn_C4q-MeQb2ricYg</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Koller, C. M.</creator><creator>Koutná, N.</creator><creator>Ramm, J.</creator><creator>Kolozsvári, S.</creator><creator>Paulitsch, J.</creator><creator>Holec, D.</creator><creator>Mayrhofer, P. H.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7901-4736</orcidid><orcidid>https://orcid.org/0000-0002-3397-7681</orcidid><orcidid>https://orcid.org/0000-0001-7328-9333</orcidid><orcidid>https://orcid.org/0000-0003-0410-9364</orcidid><orcidid>https://orcid.org/0000-0002-3516-1061</orcidid><orcidid>https://orcid.org/0000-0001-7314-5938</orcidid></search><sort><creationdate>201602</creationdate><title>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</title><author>Koller, C. M. ; Koutná, N. ; Ramm, J. ; Kolozsvári, S. ; Paulitsch, J. ; Holec, D. ; Mayrhofer, P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Density functional theory</topic><topic>Energy of formation</topic><topic>First principles</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Phase composition</topic><topic>Phase stability</topic><topic>Physical vapor deposition</topic><topic>Point defects</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koller, C. M.</creatorcontrib><creatorcontrib>Koutná, N.</creatorcontrib><creatorcontrib>Ramm, J.</creatorcontrib><creatorcontrib>Kolozsvári, S.</creatorcontrib><creatorcontrib>Paulitsch, J.</creatorcontrib><creatorcontrib>Holec, D.</creatorcontrib><creatorcontrib>Mayrhofer, P. H.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koller, C. M.</au><au>Koutná, N.</au><au>Ramm, J.</au><au>Kolozsvári, S.</au><au>Paulitsch, J.</au><au>Holec, D.</au><au>Mayrhofer, P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</atitle><jtitle>AIP advances</jtitle><date>2016-02</date><risdate>2016</risdate><volume>6</volume><issue>2</issue><spage>025002</spage><epage>025002-9</epage><pages>025002-025002-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941573</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7901-4736</orcidid><orcidid>https://orcid.org/0000-0002-3397-7681</orcidid><orcidid>https://orcid.org/0000-0001-7328-9333</orcidid><orcidid>https://orcid.org/0000-0003-0410-9364</orcidid><orcidid>https://orcid.org/0000-0002-3516-1061</orcidid><orcidid>https://orcid.org/0000-0001-7314-5938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2016-02, Vol.6 (2), p.025002-025002-9 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4941573 |
source | AIP Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Aluminum oxide Density functional theory Energy of formation First principles Free energy Heat of formation Phase composition Phase stability Physical vapor deposition Point defects Solid solutions |
title | First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20studies%20on%20the%20impact%20of%20point%20defects%20on%20the%20phase%20stability%20of%20(AlxCr1%E2%88%92x)2O3%20solid%20solutions&rft.jtitle=AIP%20advances&rft.au=Koller,%20C.%20M.&rft.date=2016-02&rft.volume=6&rft.issue=2&rft.spage=025002&rft.epage=025002-9&rft.pages=025002-025002-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4941573&rft_dat=%3Cproquest_scita%3E2121873727%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121873727&rft_id=info:pmid/&rfr_iscdi=true |