Loading…

First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions

Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2016-02, Vol.6 (2), p.025002-025002-9
Main Authors: Koller, C. M., Koutná, N., Ramm, J., Kolozsvári, S., Paulitsch, J., Holec, D., Mayrhofer, P. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3
cites cdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3
container_end_page 025002-9
container_issue 2
container_start_page 025002
container_title AIP advances
container_volume 6
creator Koller, C. M.
Koutná, N.
Ramm, J.
Kolozsvári, S.
Paulitsch, J.
Holec, D.
Mayrhofer, P. H.
description Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.
doi_str_mv 10.1063/1.4941573
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4941573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60b6b426b68646bb81682032e1578c0d</doaj_id><sourcerecordid>2121873727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</originalsourceid><addsrcrecordid>eNqdkc1OAyEQxzdGE0314Bts4kVNqgywLHs0jR9NmvSiZ8KyYGnWZQXW2Dfw7CP6JFLbVM_OgZnM_OYPzGTZKaArQIxcwxWtKBQl2cuOMBR8TDBm-3_iw-wkhCVKRitAnB5lr3fWh5j33nbK9q0OeYhDY5N3XR4XOrcvvVQxdybvne1i3mijVdyV-4UMOvXI2rY2rtbc-U37PvHw9fH5foHnJA-utc36HKJ1XTjODoxsgz7Z-lH2dHf7OHkYz-b308nNbKwIJWRMCBSUE8VQWUtsQCOmONMKIUCI4yKlgBqQmFa4oUVBKWdGGkIqXpcaGzLKphvdxsmlSB98kX4lnLTiJ-H8s5A-WtVqwVDNaopZzTijrK45MI4RwTrNkivUJK2zjVbv3eugQxRLN_guPV9gwMBLUuIyURcbSnkXgtdmdysgsV6QALFdUGIvN2xQNsr1YP4Hvzn_C4q-MeQb2ricYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121873727</pqid></control><display><type>article</type><title>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Koller, C. M. ; Koutná, N. ; Ramm, J. ; Kolozsvári, S. ; Paulitsch, J. ; Holec, D. ; Mayrhofer, P. H.</creator><creatorcontrib>Koller, C. M. ; Koutná, N. ; Ramm, J. ; Kolozsvári, S. ; Paulitsch, J. ; Holec, D. ; Mayrhofer, P. H.</creatorcontrib><description>Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4941573</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Density functional theory ; Energy of formation ; First principles ; Free energy ; Heat of formation ; Phase composition ; Phase stability ; Physical vapor deposition ; Point defects ; Solid solutions</subject><ispartof>AIP advances, 2016-02, Vol.6 (2), p.025002-025002-9</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</citedby><cites>FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</cites><orcidid>0000-0001-7901-4736 ; 0000-0002-3397-7681 ; 0000-0001-7328-9333 ; 0000-0003-0410-9364 ; 0000-0002-3516-1061 ; 0000-0001-7314-5938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4941573$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27867,27901,27902,76151</link.rule.ids></links><search><creatorcontrib>Koller, C. M.</creatorcontrib><creatorcontrib>Koutná, N.</creatorcontrib><creatorcontrib>Ramm, J.</creatorcontrib><creatorcontrib>Kolozsvári, S.</creatorcontrib><creatorcontrib>Paulitsch, J.</creatorcontrib><creatorcontrib>Holec, D.</creatorcontrib><creatorcontrib>Mayrhofer, P. H.</creatorcontrib><title>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</title><title>AIP advances</title><description>Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.</description><subject>Aluminum oxide</subject><subject>Density functional theory</subject><subject>Energy of formation</subject><subject>First principles</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Phase composition</subject><subject>Phase stability</subject><subject>Physical vapor deposition</subject><subject>Point defects</subject><subject>Solid solutions</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkc1OAyEQxzdGE0314Bts4kVNqgywLHs0jR9NmvSiZ8KyYGnWZQXW2Dfw7CP6JFLbVM_OgZnM_OYPzGTZKaArQIxcwxWtKBQl2cuOMBR8TDBm-3_iw-wkhCVKRitAnB5lr3fWh5j33nbK9q0OeYhDY5N3XR4XOrcvvVQxdybvne1i3mijVdyV-4UMOvXI2rY2rtbc-U37PvHw9fH5foHnJA-utc36HKJ1XTjODoxsgz7Z-lH2dHf7OHkYz-b308nNbKwIJWRMCBSUE8VQWUtsQCOmONMKIUCI4yKlgBqQmFa4oUVBKWdGGkIqXpcaGzLKphvdxsmlSB98kX4lnLTiJ-H8s5A-WtVqwVDNaopZzTijrK45MI4RwTrNkivUJK2zjVbv3eugQxRLN_guPV9gwMBLUuIyURcbSnkXgtdmdysgsV6QALFdUGIvN2xQNsr1YP4Hvzn_C4q-MeQb2ricYg</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Koller, C. M.</creator><creator>Koutná, N.</creator><creator>Ramm, J.</creator><creator>Kolozsvári, S.</creator><creator>Paulitsch, J.</creator><creator>Holec, D.</creator><creator>Mayrhofer, P. H.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7901-4736</orcidid><orcidid>https://orcid.org/0000-0002-3397-7681</orcidid><orcidid>https://orcid.org/0000-0001-7328-9333</orcidid><orcidid>https://orcid.org/0000-0003-0410-9364</orcidid><orcidid>https://orcid.org/0000-0002-3516-1061</orcidid><orcidid>https://orcid.org/0000-0001-7314-5938</orcidid></search><sort><creationdate>201602</creationdate><title>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</title><author>Koller, C. M. ; Koutná, N. ; Ramm, J. ; Kolozsvári, S. ; Paulitsch, J. ; Holec, D. ; Mayrhofer, P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Density functional theory</topic><topic>Energy of formation</topic><topic>First principles</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Phase composition</topic><topic>Phase stability</topic><topic>Physical vapor deposition</topic><topic>Point defects</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koller, C. M.</creatorcontrib><creatorcontrib>Koutná, N.</creatorcontrib><creatorcontrib>Ramm, J.</creatorcontrib><creatorcontrib>Kolozsvári, S.</creatorcontrib><creatorcontrib>Paulitsch, J.</creatorcontrib><creatorcontrib>Holec, D.</creatorcontrib><creatorcontrib>Mayrhofer, P. H.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koller, C. M.</au><au>Koutná, N.</au><au>Ramm, J.</au><au>Kolozsvári, S.</au><au>Paulitsch, J.</au><au>Holec, D.</au><au>Mayrhofer, P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions</atitle><jtitle>AIP advances</jtitle><date>2016-02</date><risdate>2016</risdate><volume>6</volume><issue>2</issue><spage>025002</spage><epage>025002-9</epage><pages>025002-025002-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1−x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941573</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7901-4736</orcidid><orcidid>https://orcid.org/0000-0002-3397-7681</orcidid><orcidid>https://orcid.org/0000-0001-7328-9333</orcidid><orcidid>https://orcid.org/0000-0003-0410-9364</orcidid><orcidid>https://orcid.org/0000-0002-3516-1061</orcidid><orcidid>https://orcid.org/0000-0001-7314-5938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2016-02, Vol.6 (2), p.025002-025002-9
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_4941573
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Aluminum oxide
Density functional theory
Energy of formation
First principles
Free energy
Heat of formation
Phase composition
Phase stability
Physical vapor deposition
Point defects
Solid solutions
title First principles studies on the impact of point defects on the phase stability of (AlxCr1−x)2O3 solid solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20studies%20on%20the%20impact%20of%20point%20defects%20on%20the%20phase%20stability%20of%20(AlxCr1%E2%88%92x)2O3%20solid%20solutions&rft.jtitle=AIP%20advances&rft.au=Koller,%20C.%20M.&rft.date=2016-02&rft.volume=6&rft.issue=2&rft.spage=025002&rft.epage=025002-9&rft.pages=025002-025002-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4941573&rft_dat=%3Cproquest_scita%3E2121873727%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3433-3315483c607ba2f1e06c86ec001008252f114f1a2492d4554486faf3398b7e2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121873727&rft_id=info:pmid/&rfr_iscdi=true