Loading…
Microstructure and mechanical properties of as-cast Ti-Mo-xCr alloy for biomedical application
Beta Ti alloys is one of the most attractive biomaterials due to their better corrosion resistance, biocompatibility, greater specific strength and lower elastic modulus than stainless steels and Co-Cr based alloys. Cr is the strong beta Ti stabilizer and has lower density than Nb, Sn and Ta. In thi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beta Ti alloys is one of the most attractive biomaterials due to their better corrosion resistance, biocompatibility, greater specific strength and lower elastic modulus than stainless steels and Co-Cr based alloys. Cr is the strong beta Ti stabilizer and has lower density than Nb, Sn and Ta. In this study As cast Ti-12Mo and Ti-12-xCr with Cr content range 1, 3, 5, and 10 wt.% prepared by using arc melting vacuum-pressure casting were investigated. The as cast Ti-Mo and Ti-Mo-xCr examined using X-ray diffraction (XRD), optical microscope (OM) and Vickers hardness tester. Experimental result indicate Ti-12Mo-xNb match for β phase peaks but TiO2 phase occurred in all alloys. The vickers hardness values of all the Ti-12Mo-xCr alloys are higher than HV 1000. The optical microscope investigation indicate Cr content influence Ti-Mo-xCr microstructure. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4941631 |