Loading…

Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading

Molecular dynamic calculations are used to examine the anisotropy of voids coalescence under loading and unloading conditions in monocrystalline coppers. In this paper, three typical orientations are investigated, including [100], [110], and [111]. The study shows that voids collapse after the shock...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-04, Vol.119 (16)
Main Authors: Peng, Xiaojuan, Zhu, Wenjun, Chen, Kaiguo, Deng, Xiaoliang, Wei, Yongkai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular dynamic calculations are used to examine the anisotropy of voids coalescence under loading and unloading conditions in monocrystalline coppers. In this paper, three typical orientations are investigated, including [100], [110], and [111]. The study shows that voids collapse after the shock loading, leaving two disordered regions at the initial voids sites. Voids re-nucleate in the disordered regions and grow by the emission of dislocations on various slip planes. The dislocation motion contributes to local stress relaxation, which causes the voids to expand to certain radius and then coalesce with each other by dislocation emission. Due to the influence of the anisotropy shear field and different slip systems around the voids, the dislocations emit more easily at specific position, which lead to the anisotropy of void coalescence. A two-dimensional analysis model based on a shear dislocation is proposed and it explains the phenomena of void coalescence in the simulations quite well.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4947051