Loading…

Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules

Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2016-04, Vol.6 (4), p.045221-045221-5
Main Authors: Ha, Dong-Gwang, Kim, Jang-Joo, Baldo, Marc A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263
cites cdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263
container_end_page 045221-5
container_issue 4
container_start_page 045221
container_title AIP advances
container_volume 6
creator Ha, Dong-Gwang
Kim, Jang-Joo
Baldo, Marc A.
description Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.
doi_str_mv 10.1063/1.4948591
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4948591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_366aa72db9ea448f9588d0d0fa4ae6f7</doaj_id><sourcerecordid>2121867706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</originalsourceid><addsrcrecordid>eNqdkU1vFDEMhkcIJKrSA_8gghNIW_I1mcwRVRQqrcQFzpGTcXazZJMhyVL498x2KuCML7bsR6-_uu4lo9eMKvGOXctR6n5kT7oLznq9EZyrp__Ez7urWg90MTkyquVFF7chfSMW2z1iIvs8zyHtyDFPGCuBNJEZi8sRWsiJVAfxXI5wX4nPhbg9lB2SViDVOZdGQiLH8LOdClaSPalHiHFRi-hOEeuL7pmHWPHq0V92X28_fLn5tNl-_nh38367cbLv20b0EoQSlgnvrR2VohpHGK3umdKWUzZw7oAqBpJTi6DsMCBTkqHrB8mVuOzuVt0pw8HMJRyh_DIZgnlI5LIzUFpwEY1QCmDgkx0RpNR-7LWe6EQ9SEDlh0Xr1aqVawumutDQ7V1OCV0zjCvOtV6g1ys0l_z9hLWZQz6VtOxoOONMq2Gg57HerJQrudaC_s9ojJrzAw0zjw9c2Lcre-74cP3_g3_k8hc08-TFb6hOqME</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121867706</pqid></control><display><type>article</type><title>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</title><source>Full-Text Journals in Chemistry (Open access)</source><source>AIP Open Access Journals</source><creator>Ha, Dong-Gwang ; Kim, Jang-Joo ; Baldo, Marc A.</creator><creatorcontrib>Ha, Dong-Gwang ; Kim, Jang-Joo ; Baldo, Marc A. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4948591</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Benzene ; blends ; Charge materials ; Charge transport ; charged excitons ; Composition ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; conduction ; Conductors ; current density ; Empirical analysis ; hole transport ; hopping transport ; host ; mobility ; n-vinylcarbazole ; Organic light emitting diodes ; Percolation ; Scaling laws ; systems ; threshold</subject><ispartof>AIP advances, 2016-04, Vol.6 (4), p.045221-045221-5</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</citedby><cites>FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4948591$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27889,27923,27924,76279</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1262288$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Dong-Gwang</creatorcontrib><creatorcontrib>Kim, Jang-Joo</creatorcontrib><creatorcontrib>Baldo, Marc A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</title><title>AIP advances</title><description>Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.</description><subject>Benzene</subject><subject>blends</subject><subject>Charge materials</subject><subject>Charge transport</subject><subject>charged excitons</subject><subject>Composition</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>conduction</subject><subject>Conductors</subject><subject>current density</subject><subject>Empirical analysis</subject><subject>hole transport</subject><subject>hopping transport</subject><subject>host</subject><subject>mobility</subject><subject>n-vinylcarbazole</subject><subject>Organic light emitting diodes</subject><subject>Percolation</subject><subject>Scaling laws</subject><subject>systems</subject><subject>threshold</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkU1vFDEMhkcIJKrSA_8gghNIW_I1mcwRVRQqrcQFzpGTcXazZJMhyVL498x2KuCML7bsR6-_uu4lo9eMKvGOXctR6n5kT7oLznq9EZyrp__Ez7urWg90MTkyquVFF7chfSMW2z1iIvs8zyHtyDFPGCuBNJEZi8sRWsiJVAfxXI5wX4nPhbg9lB2SViDVOZdGQiLH8LOdClaSPalHiHFRi-hOEeuL7pmHWPHq0V92X28_fLn5tNl-_nh38367cbLv20b0EoQSlgnvrR2VohpHGK3umdKWUzZw7oAqBpJTi6DsMCBTkqHrB8mVuOzuVt0pw8HMJRyh_DIZgnlI5LIzUFpwEY1QCmDgkx0RpNR-7LWe6EQ9SEDlh0Xr1aqVawumutDQ7V1OCV0zjCvOtV6g1ys0l_z9hLWZQz6VtOxoOONMq2Gg57HerJQrudaC_s9ojJrzAw0zjw9c2Lcre-74cP3_g3_k8hc08-TFb6hOqME</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Ha, Dong-Gwang</creator><creator>Kim, Jang-Joo</creator><creator>Baldo, Marc A.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20160401</creationdate><title>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</title><author>Ha, Dong-Gwang ; Kim, Jang-Joo ; Baldo, Marc A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benzene</topic><topic>blends</topic><topic>Charge materials</topic><topic>Charge transport</topic><topic>charged excitons</topic><topic>Composition</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>conduction</topic><topic>Conductors</topic><topic>current density</topic><topic>Empirical analysis</topic><topic>hole transport</topic><topic>hopping transport</topic><topic>host</topic><topic>mobility</topic><topic>n-vinylcarbazole</topic><topic>Organic light emitting diodes</topic><topic>Percolation</topic><topic>Scaling laws</topic><topic>systems</topic><topic>threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Dong-Gwang</creatorcontrib><creatorcontrib>Kim, Jang-Joo</creatorcontrib><creatorcontrib>Baldo, Marc A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Dong-Gwang</au><au>Kim, Jang-Joo</au><au>Baldo, Marc A.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</atitle><jtitle>AIP advances</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>6</volume><issue>4</issue><spage>045221</spage><epage>045221-5</epage><pages>045221-045221-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948591</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2016-04, Vol.6 (4), p.045221-045221-5
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_1_4948591
source Full-Text Journals in Chemistry (Open access); AIP Open Access Journals
subjects Benzene
blends
Charge materials
Charge transport
charged excitons
Composition
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
conduction
Conductors
current density
Empirical analysis
hole transport
hopping transport
host
mobility
n-vinylcarbazole
Organic light emitting diodes
Percolation
Scaling laws
systems
threshold
title Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Link%20between%20hopping%20models%20and%20percolation%20scaling%20laws%20for%20charge%20transport%20in%20mixtures%20of%20small%20molecules&rft.jtitle=AIP%20advances&rft.au=Ha,%20Dong-Gwang&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2016-04-01&rft.volume=6&rft.issue=4&rft.spage=045221&rft.epage=045221-5&rft.pages=045221-045221-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4948591&rft_dat=%3Cproquest_scita%3E2121867706%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121867706&rft_id=info:pmid/&rfr_iscdi=true