Loading…
Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host...
Saved in:
Published in: | AIP advances 2016-04, Vol.6 (4), p.045221-045221-5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263 |
container_end_page | 045221-5 |
container_issue | 4 |
container_start_page | 045221 |
container_title | AIP advances |
container_volume | 6 |
creator | Ha, Dong-Gwang Kim, Jang-Joo Baldo, Marc A. |
description | Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs. |
doi_str_mv | 10.1063/1.4948591 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4948591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_366aa72db9ea448f9588d0d0fa4ae6f7</doaj_id><sourcerecordid>2121867706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</originalsourceid><addsrcrecordid>eNqdkU1vFDEMhkcIJKrSA_8gghNIW_I1mcwRVRQqrcQFzpGTcXazZJMhyVL498x2KuCML7bsR6-_uu4lo9eMKvGOXctR6n5kT7oLznq9EZyrp__Ez7urWg90MTkyquVFF7chfSMW2z1iIvs8zyHtyDFPGCuBNJEZi8sRWsiJVAfxXI5wX4nPhbg9lB2SViDVOZdGQiLH8LOdClaSPalHiHFRi-hOEeuL7pmHWPHq0V92X28_fLn5tNl-_nh38367cbLv20b0EoQSlgnvrR2VohpHGK3umdKWUzZw7oAqBpJTi6DsMCBTkqHrB8mVuOzuVt0pw8HMJRyh_DIZgnlI5LIzUFpwEY1QCmDgkx0RpNR-7LWe6EQ9SEDlh0Xr1aqVawumutDQ7V1OCV0zjCvOtV6g1ys0l_z9hLWZQz6VtOxoOONMq2Gg57HerJQrudaC_s9ojJrzAw0zjw9c2Lcre-74cP3_g3_k8hc08-TFb6hOqME</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121867706</pqid></control><display><type>article</type><title>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</title><source>Full-Text Journals in Chemistry (Open access)</source><source>AIP Open Access Journals</source><creator>Ha, Dong-Gwang ; Kim, Jang-Joo ; Baldo, Marc A.</creator><creatorcontrib>Ha, Dong-Gwang ; Kim, Jang-Joo ; Baldo, Marc A. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4948591</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Benzene ; blends ; Charge materials ; Charge transport ; charged excitons ; Composition ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; conduction ; Conductors ; current density ; Empirical analysis ; hole transport ; hopping transport ; host ; mobility ; n-vinylcarbazole ; Organic light emitting diodes ; Percolation ; Scaling laws ; systems ; threshold</subject><ispartof>AIP advances, 2016-04, Vol.6 (4), p.045221-045221-5</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</citedby><cites>FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4948591$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27889,27923,27924,76279</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1262288$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Dong-Gwang</creatorcontrib><creatorcontrib>Kim, Jang-Joo</creatorcontrib><creatorcontrib>Baldo, Marc A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</title><title>AIP advances</title><description>Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.</description><subject>Benzene</subject><subject>blends</subject><subject>Charge materials</subject><subject>Charge transport</subject><subject>charged excitons</subject><subject>Composition</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>conduction</subject><subject>Conductors</subject><subject>current density</subject><subject>Empirical analysis</subject><subject>hole transport</subject><subject>hopping transport</subject><subject>host</subject><subject>mobility</subject><subject>n-vinylcarbazole</subject><subject>Organic light emitting diodes</subject><subject>Percolation</subject><subject>Scaling laws</subject><subject>systems</subject><subject>threshold</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNqdkU1vFDEMhkcIJKrSA_8gghNIW_I1mcwRVRQqrcQFzpGTcXazZJMhyVL498x2KuCML7bsR6-_uu4lo9eMKvGOXctR6n5kT7oLznq9EZyrp__Ez7urWg90MTkyquVFF7chfSMW2z1iIvs8zyHtyDFPGCuBNJEZi8sRWsiJVAfxXI5wX4nPhbg9lB2SViDVOZdGQiLH8LOdClaSPalHiHFRi-hOEeuL7pmHWPHq0V92X28_fLn5tNl-_nh38367cbLv20b0EoQSlgnvrR2VohpHGK3umdKWUzZw7oAqBpJTi6DsMCBTkqHrB8mVuOzuVt0pw8HMJRyh_DIZgnlI5LIzUFpwEY1QCmDgkx0RpNR-7LWe6EQ9SEDlh0Xr1aqVawumutDQ7V1OCV0zjCvOtV6g1ys0l_z9hLWZQz6VtOxoOONMq2Gg57HerJQrudaC_s9ojJrzAw0zjw9c2Lcre-74cP3_g3_k8hc08-TFb6hOqME</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Ha, Dong-Gwang</creator><creator>Kim, Jang-Joo</creator><creator>Baldo, Marc A.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20160401</creationdate><title>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</title><author>Ha, Dong-Gwang ; Kim, Jang-Joo ; Baldo, Marc A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benzene</topic><topic>blends</topic><topic>Charge materials</topic><topic>Charge transport</topic><topic>charged excitons</topic><topic>Composition</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>conduction</topic><topic>Conductors</topic><topic>current density</topic><topic>Empirical analysis</topic><topic>hole transport</topic><topic>hopping transport</topic><topic>host</topic><topic>mobility</topic><topic>n-vinylcarbazole</topic><topic>Organic light emitting diodes</topic><topic>Percolation</topic><topic>Scaling laws</topic><topic>systems</topic><topic>threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Dong-Gwang</creatorcontrib><creatorcontrib>Kim, Jang-Joo</creatorcontrib><creatorcontrib>Baldo, Marc A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Dong-Gwang</au><au>Kim, Jang-Joo</au><au>Baldo, Marc A.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules</atitle><jtitle>AIP advances</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>6</volume><issue>4</issue><spage>045221</spage><epage>045221-5</epage><pages>045221-045221-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948591</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2016-04, Vol.6 (4), p.045221-045221-5 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4948591 |
source | Full-Text Journals in Chemistry (Open access); AIP Open Access Journals |
subjects | Benzene blends Charge materials Charge transport charged excitons Composition CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY conduction Conductors current density Empirical analysis hole transport hopping transport host mobility n-vinylcarbazole Organic light emitting diodes Percolation Scaling laws systems threshold |
title | Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Link%20between%20hopping%20models%20and%20percolation%20scaling%20laws%20for%20charge%20transport%20in%20mixtures%20of%20small%20molecules&rft.jtitle=AIP%20advances&rft.au=Ha,%20Dong-Gwang&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2016-04-01&rft.volume=6&rft.issue=4&rft.spage=045221&rft.epage=045221-5&rft.pages=045221-045221-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4948591&rft_dat=%3Cproquest_scita%3E2121867706%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-354a363b13ffbb96608e9a9b85168b201722ca061a420bea6b77e1641ec574263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121867706&rft_id=info:pmid/&rfr_iscdi=true |