Loading…

The early stop heuristic: A new convergence criterion for K-means

In this paper, an enhanced version of the K-Means algorithm that incorporates a new convergence criterion is presented. The largest centroid displacement at each iteration was used as mean to define whether the algorithm stops or not its execution. Computational experiments showed that in general, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Mexicano, A., Rodríguez, R., Cervantes, S., Montes, P., Jiménez, M., Almanza, N., Abrego, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1738
creator Mexicano, A.
Rodríguez, R.
Cervantes, S.
Montes, P.
Jiménez, M.
Almanza, N.
Abrego, A.
description In this paper, an enhanced version of the K-Means algorithm that incorporates a new convergence criterion is presented. The largest centroid displacement at each iteration was used as mean to define whether the algorithm stops or not its execution. Computational experiments showed that in general, the Early Stop Heuristic is able to reduce the execution time of the standard version without a significant quality reduction. According to the experimentation, the Early Stop Heuristic reached a time reduction up to 87.06% only a quality reduction of 2.46% for the Transactions dataset, the worst case occurred when the Skin instance was grouped into 200 clusters obtaining a 79.04% in reduction time, and a 4.27% in quality reduction.
doi_str_mv 10.1063/1.4952103
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4952103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121743128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-bf7eccf4bf7151b8986311f79c508fccafe5cf306a47b090da1cf9c8a09cd48b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsL3yDgTpiaP5lMEneleMOCmwruQiaT2CntZEzSSt_ekRbcuTqb71w4CF0DmQCp2B1MSsUpEHaCRsA5FKKC6hSNCFFlQUv2cY4uUloRQpUQcoSmi6XDzsT1Hqccerx029im3Np7PMWd-8Y2dDsXP11nHbaxzS62ocM-RPxabJzp0iU682ad3NVRx-j98WExey7mb08vs-m86Clnuai9cNb6clDgUEslKwbghbKcSG-t8Y5bz0hlSlETRRoD1isrDVG2KWXNxujmkNvH8LV1KetV2MZuqNQUKIiSAZUDdXugkm2zycNW3cd2Y-Je70LUoI_36L7x_8FA9O-ffwb2AzlHZwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121743128</pqid></control><display><type>conference_proceeding</type><title>The early stop heuristic: A new convergence criterion for K-means</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mexicano, A. ; Rodríguez, R. ; Cervantes, S. ; Montes, P. ; Jiménez, M. ; Almanza, N. ; Abrego, A.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Mexicano, A. ; Rodríguez, R. ; Cervantes, S. ; Montes, P. ; Jiménez, M. ; Almanza, N. ; Abrego, A. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>In this paper, an enhanced version of the K-Means algorithm that incorporates a new convergence criterion is presented. The largest centroid displacement at each iteration was used as mean to define whether the algorithm stops or not its execution. Computational experiments showed that in general, the Early Stop Heuristic is able to reduce the execution time of the standard version without a significant quality reduction. According to the experimentation, the Early Stop Heuristic reached a time reduction up to 87.06% only a quality reduction of 2.46% for the Transactions dataset, the worst case occurred when the Skin instance was grouped into 200 clusters obtaining a 79.04% in reduction time, and a 4.27% in quality reduction.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4952103</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Convergence ; Criteria ; Experimentation ; Heuristic ; Iterative methods ; Reduction</subject><ispartof>AIP conference proceedings, 2016, Vol.1738 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Mexicano, A.</creatorcontrib><creatorcontrib>Rodríguez, R.</creatorcontrib><creatorcontrib>Cervantes, S.</creatorcontrib><creatorcontrib>Montes, P.</creatorcontrib><creatorcontrib>Jiménez, M.</creatorcontrib><creatorcontrib>Almanza, N.</creatorcontrib><creatorcontrib>Abrego, A.</creatorcontrib><title>The early stop heuristic: A new convergence criterion for K-means</title><title>AIP conference proceedings</title><description>In this paper, an enhanced version of the K-Means algorithm that incorporates a new convergence criterion is presented. The largest centroid displacement at each iteration was used as mean to define whether the algorithm stops or not its execution. Computational experiments showed that in general, the Early Stop Heuristic is able to reduce the execution time of the standard version without a significant quality reduction. According to the experimentation, the Early Stop Heuristic reached a time reduction up to 87.06% only a quality reduction of 2.46% for the Transactions dataset, the worst case occurred when the Skin instance was grouped into 200 clusters obtaining a 79.04% in reduction time, and a 4.27% in quality reduction.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Experimentation</subject><subject>Heuristic</subject><subject>Iterative methods</subject><subject>Reduction</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKAzEYhYMoWKsL3yDgTpiaP5lMEneleMOCmwruQiaT2CntZEzSSt_ekRbcuTqb71w4CF0DmQCp2B1MSsUpEHaCRsA5FKKC6hSNCFFlQUv2cY4uUloRQpUQcoSmi6XDzsT1Hqccerx029im3Np7PMWd-8Y2dDsXP11nHbaxzS62ocM-RPxabJzp0iU682ad3NVRx-j98WExey7mb08vs-m86Clnuai9cNb6clDgUEslKwbghbKcSG-t8Y5bz0hlSlETRRoD1isrDVG2KWXNxujmkNvH8LV1KetV2MZuqNQUKIiSAZUDdXugkm2zycNW3cd2Y-Je70LUoI_36L7x_8FA9O-ffwb2AzlHZwg</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Mexicano, A.</creator><creator>Rodríguez, R.</creator><creator>Cervantes, S.</creator><creator>Montes, P.</creator><creator>Jiménez, M.</creator><creator>Almanza, N.</creator><creator>Abrego, A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160608</creationdate><title>The early stop heuristic: A new convergence criterion for K-means</title><author>Mexicano, A. ; Rodríguez, R. ; Cervantes, S. ; Montes, P. ; Jiménez, M. ; Almanza, N. ; Abrego, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-bf7eccf4bf7151b8986311f79c508fccafe5cf306a47b090da1cf9c8a09cd48b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Experimentation</topic><topic>Heuristic</topic><topic>Iterative methods</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mexicano, A.</creatorcontrib><creatorcontrib>Rodríguez, R.</creatorcontrib><creatorcontrib>Cervantes, S.</creatorcontrib><creatorcontrib>Montes, P.</creatorcontrib><creatorcontrib>Jiménez, M.</creatorcontrib><creatorcontrib>Almanza, N.</creatorcontrib><creatorcontrib>Abrego, A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mexicano, A.</au><au>Rodríguez, R.</au><au>Cervantes, S.</au><au>Montes, P.</au><au>Jiménez, M.</au><au>Almanza, N.</au><au>Abrego, A.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The early stop heuristic: A new convergence criterion for K-means</atitle><btitle>AIP conference proceedings</btitle><date>2016-06-08</date><risdate>2016</risdate><volume>1738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, an enhanced version of the K-Means algorithm that incorporates a new convergence criterion is presented. The largest centroid displacement at each iteration was used as mean to define whether the algorithm stops or not its execution. Computational experiments showed that in general, the Early Stop Heuristic is able to reduce the execution time of the standard version without a significant quality reduction. According to the experimentation, the Early Stop Heuristic reached a time reduction up to 87.06% only a quality reduction of 2.46% for the Transactions dataset, the worst case occurred when the Skin instance was grouped into 200 clusters obtaining a 79.04% in reduction time, and a 4.27% in quality reduction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952103</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1738 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4952103
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Convergence
Criteria
Experimentation
Heuristic
Iterative methods
Reduction
title The early stop heuristic: A new convergence criterion for K-means
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20early%20stop%20heuristic:%20A%20new%20convergence%20criterion%20for%20K-means&rft.btitle=AIP%20conference%20proceedings&rft.au=Mexicano,%20A.&rft.date=2016-06-08&rft.volume=1738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4952103&rft_dat=%3Cproquest_scita%3E2121743128%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-bf7eccf4bf7151b8986311f79c508fccafe5cf306a47b090da1cf9c8a09cd48b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121743128&rft_id=info:pmid/&rfr_iscdi=true