Loading…
Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method
For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particle...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particles are reflected exactly at the landing points on the surface of the moving immersed body, while the effective cell volumes are taken into account for calculating the collisions between molecules. The effective cell volumes are computed by utilizing the Lagrangian intersecting points between the immersed boundary and the fixed background grid with a simple polyhedra regeneration algorithm. This method has been implemented in OpenFOAM and validated by computing the drag forces exerted on steady and moving spheres and comparing the results to that from conventional body-fitted mesh DSMC simulations and to analytical approximations. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4952253 |