Loading…

Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method

For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particle...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, W., Kleijn, C. R., van Ommen, J. R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1738
creator Jin, W.
Kleijn, C. R.
van Ommen, J. R.
description For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particles are reflected exactly at the landing points on the surface of the moving immersed body, while the effective cell volumes are taken into account for calculating the collisions between molecules. The effective cell volumes are computed by utilizing the Lagrangian intersecting points between the immersed boundary and the fixed background grid with a simple polyhedra regeneration algorithm. This method has been implemented in OpenFOAM and validated by computing the drag forces exerted on steady and moving spheres and comparing the results to that from conventional body-fitted mesh DSMC simulations and to analytical approximations.
doi_str_mv 10.1063/1.4952253
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4952253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121716181</sourcerecordid><originalsourceid>FETCH-LOGICAL-j354t-ac9946aeba8d0d1b4f0d847e4e4a91ce74fbc361e71d7a12d80b3a1ddbe85cd03</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYBb0LXTJM27VHqX1jxouAtTpN0zdI2a9IKfnuru-LN08Cb38y8eYScAlsAy_kFLESZpWnG98gMsgwSmUO-T2aMlSJJBX85JEcxrhlLSymLGXm9csHqgUbXjS0Ozvf0wfeDpRWG1lONrf7VfUMDBts4a-gKIzUBV3SMrl9R7KnrOhvi1Kr92BsMn7Szw5s3x-SgwTbak12dk-eb66fqLlk-3t5Xl8tkzTMxJKjLUuRoaywMM1CLhplCSCuswBK0laKpNc_BSjASITUFqzmCMbUtMm0Yn5Oz7d5N8O-jjYNa-zH000mVQgoScihgos63VNRu-HlLbYLrJrvqwwcFapee2pjmPxiY-o77b4B_AUKJc0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121716181</pqid></control><display><type>conference_proceeding</type><title>Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jin, W. ; Kleijn, C. R. ; van Ommen, J. R.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Jin, W. ; Kleijn, C. R. ; van Ommen, J. R. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particles are reflected exactly at the landing points on the surface of the moving immersed body, while the effective cell volumes are taken into account for calculating the collisions between molecules. The effective cell volumes are computed by utilizing the Lagrangian intersecting points between the immersed boundary and the fixed background grid with a simple polyhedra regeneration algorithm. This method has been implemented in OpenFOAM and validated by computing the drag forces exerted on steady and moving spheres and comparing the results to that from conventional body-fitted mesh DSMC simulations and to analytical approximations.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4952253</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Direct simulation Monte Carlo method ; Drag ; Finite element method ; Mathematical analysis ; Monte Carlo simulation ; Rarefied gases ; Regeneration ; Three dimensional bodies ; Three dimensional motion</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1738 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Jin, W.</creatorcontrib><creatorcontrib>Kleijn, C. R.</creatorcontrib><creatorcontrib>van Ommen, J. R.</creatorcontrib><title>Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method</title><title>AIP Conference Proceedings</title><description>For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particles are reflected exactly at the landing points on the surface of the moving immersed body, while the effective cell volumes are taken into account for calculating the collisions between molecules. The effective cell volumes are computed by utilizing the Lagrangian intersecting points between the immersed boundary and the fixed background grid with a simple polyhedra regeneration algorithm. This method has been implemented in OpenFOAM and validated by computing the drag forces exerted on steady and moving spheres and comparing the results to that from conventional body-fitted mesh DSMC simulations and to analytical approximations.</description><subject>Computer simulation</subject><subject>Direct simulation Monte Carlo method</subject><subject>Drag</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Rarefied gases</subject><subject>Regeneration</subject><subject>Three dimensional bodies</subject><subject>Three dimensional motion</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYBb0LXTJM27VHqX1jxouAtTpN0zdI2a9IKfnuru-LN08Cb38y8eYScAlsAy_kFLESZpWnG98gMsgwSmUO-T2aMlSJJBX85JEcxrhlLSymLGXm9csHqgUbXjS0Ozvf0wfeDpRWG1lONrf7VfUMDBts4a-gKIzUBV3SMrl9R7KnrOhvi1Kr92BsMn7Szw5s3x-SgwTbak12dk-eb66fqLlk-3t5Xl8tkzTMxJKjLUuRoaywMM1CLhplCSCuswBK0laKpNc_BSjASITUFqzmCMbUtMm0Yn5Oz7d5N8O-jjYNa-zH000mVQgoScihgos63VNRu-HlLbYLrJrvqwwcFapee2pjmPxiY-o77b4B_AUKJc0M</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Jin, W.</creator><creator>Kleijn, C. R.</creator><creator>van Ommen, J. R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160608</creationdate><title>Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method</title><author>Jin, W. ; Kleijn, C. R. ; van Ommen, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j354t-ac9946aeba8d0d1b4f0d847e4e4a91ce74fbc361e71d7a12d80b3a1ddbe85cd03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Direct simulation Monte Carlo method</topic><topic>Drag</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Rarefied gases</topic><topic>Regeneration</topic><topic>Three dimensional bodies</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, W.</creatorcontrib><creatorcontrib>Kleijn, C. R.</creatorcontrib><creatorcontrib>van Ommen, J. R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, W.</au><au>Kleijn, C. R.</au><au>van Ommen, J. R.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-06-08</date><risdate>2016</risdate><volume>1738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>For simulating rarefied gas flows around a moving body, an immersed boundary method is presented here in conjunction with the Direct Simulation Monte Carlo (DSMC) method in order to allow the movement of a three dimensional immersed body on top of a fixed background grid. The simulated DSMC particles are reflected exactly at the landing points on the surface of the moving immersed body, while the effective cell volumes are taken into account for calculating the collisions between molecules. The effective cell volumes are computed by utilizing the Lagrangian intersecting points between the immersed boundary and the fixed background grid with a simple polyhedra regeneration algorithm. This method has been implemented in OpenFOAM and validated by computing the drag forces exerted on steady and moving spheres and comparing the results to that from conventional body-fitted mesh DSMC simulations and to analytical approximations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952253</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2016, Vol.1738 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4952253
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computer simulation
Direct simulation Monte Carlo method
Drag
Finite element method
Mathematical analysis
Monte Carlo simulation
Rarefied gases
Regeneration
Three dimensional bodies
Three dimensional motion
title Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Direct%20simulation%20Monte%20Carlo%20calculation%20of%20rarefied%20gas%20drag%20using%20an%20immersed%20boundary%20method&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Jin,%20W.&rft.date=2016-06-08&rft.volume=1738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4952253&rft_dat=%3Cproquest_scita%3E2121716181%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j354t-ac9946aeba8d0d1b4f0d847e4e4a91ce74fbc361e71d7a12d80b3a1ddbe85cd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121716181&rft_id=info:pmid/&rfr_iscdi=true