Loading…

On the stability of a convective motion generated by a chemically reacting fluid in a pipe

Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flo...

Full description

Saved in:
Bibliographic Details
Main Authors: Koliskina, V., Kolyshkin, A., Volodko, I., Kalis, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1738
creator Koliskina, V.
Kolyshkin, A.
Volodko, I.
Kalis, H.
description Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.
doi_str_mv 10.1063/1.4952264
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4952264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121715745</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-f9a0223ce11debd8aa986e64b0cb69d82ed80f06bbf916527c3bf6924a4a56843</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZsTbJJdnOUolUo9KIgXkI-Jm3KdnfdTQv7793SgjdPc5hnZpgXoXtKZpTI_InOuBKMSX6BJlQImhWSyks0IUTxjPH86xrd9P2WEKaKopyg71WN0wZwn4yNVUwDbgI22DX1AVyKB8C7JsWmxmuooTMJPLbDEWxgF52pqgF3YEZZr3Go9tHjWI_tNrZwi66CqXq4O9cp-nx9-Zi_ZcvV4n3-vMxaJvKUBWUIY7kDSj1YXxqjSgmSW-KsVL5k4EsSiLQ2KCoFK1xug1SMG26ELHk-RQ-nvW3X_OyhT3rb7Lt6PKkZZbSgouBiVI8n1buYzPEl3XZxZ7pBH5pOU33OTbc-_Icp0ceg_wbyXwfBb5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121715745</pqid></control><display><type>conference_proceeding</type><title>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Koliskina, V. ; Kolyshkin, A. ; Volodko, I. ; Kalis, H.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Koliskina, V. ; Kolyshkin, A. ; Volodko, I. ; Kalis, H. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4952264</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Base flow ; Dimensionless numbers ; Equations of motion ; Flow stability ; Motion stability ; Organic chemistry ; Parameters ; Pipes ; Prandtl number ; Stability analysis ; Temperature distribution ; Thermodynamics</subject><ispartof>AIP conference proceedings, 2016, Vol.1738 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Koliskina, V.</creatorcontrib><creatorcontrib>Kolyshkin, A.</creatorcontrib><creatorcontrib>Volodko, I.</creatorcontrib><creatorcontrib>Kalis, H.</creatorcontrib><title>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</title><title>AIP conference proceedings</title><description>Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.</description><subject>Base flow</subject><subject>Dimensionless numbers</subject><subject>Equations of motion</subject><subject>Flow stability</subject><subject>Motion stability</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Pipes</subject><subject>Prandtl number</subject><subject>Stability analysis</subject><subject>Temperature distribution</subject><subject>Thermodynamics</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZsTbJJdnOUolUo9KIgXkI-Jm3KdnfdTQv7793SgjdPc5hnZpgXoXtKZpTI_InOuBKMSX6BJlQImhWSyks0IUTxjPH86xrd9P2WEKaKopyg71WN0wZwn4yNVUwDbgI22DX1AVyKB8C7JsWmxmuooTMJPLbDEWxgF52pqgF3YEZZr3Go9tHjWI_tNrZwi66CqXq4O9cp-nx9-Zi_ZcvV4n3-vMxaJvKUBWUIY7kDSj1YXxqjSgmSW-KsVL5k4EsSiLQ2KCoFK1xug1SMG26ELHk-RQ-nvW3X_OyhT3rb7Lt6PKkZZbSgouBiVI8n1buYzPEl3XZxZ7pBH5pOU33OTbc-_Icp0ceg_wbyXwfBb5A</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Koliskina, V.</creator><creator>Kolyshkin, A.</creator><creator>Volodko, I.</creator><creator>Kalis, H.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160608</creationdate><title>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</title><author>Koliskina, V. ; Kolyshkin, A. ; Volodko, I. ; Kalis, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-f9a0223ce11debd8aa986e64b0cb69d82ed80f06bbf916527c3bf6924a4a56843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Base flow</topic><topic>Dimensionless numbers</topic><topic>Equations of motion</topic><topic>Flow stability</topic><topic>Motion stability</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Pipes</topic><topic>Prandtl number</topic><topic>Stability analysis</topic><topic>Temperature distribution</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koliskina, V.</creatorcontrib><creatorcontrib>Kolyshkin, A.</creatorcontrib><creatorcontrib>Volodko, I.</creatorcontrib><creatorcontrib>Kalis, H.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koliskina, V.</au><au>Kolyshkin, A.</au><au>Volodko, I.</au><au>Kalis, H.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</atitle><btitle>AIP conference proceedings</btitle><date>2016-06-08</date><risdate>2016</risdate><volume>1738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952264</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1738 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4952264
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Base flow
Dimensionless numbers
Equations of motion
Flow stability
Motion stability
Organic chemistry
Parameters
Pipes
Prandtl number
Stability analysis
Temperature distribution
Thermodynamics
title On the stability of a convective motion generated by a chemically reacting fluid in a pipe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20stability%20of%20a%20convective%20motion%20generated%20by%20a%20chemically%20reacting%20fluid%20in%20a%20pipe&rft.btitle=AIP%20conference%20proceedings&rft.au=Koliskina,%20V.&rft.date=2016-06-08&rft.volume=1738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4952264&rft_dat=%3Cproquest_scita%3E2121715745%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-f9a0223ce11debd8aa986e64b0cb69d82ed80f06bbf916527c3bf6924a4a56843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121715745&rft_id=info:pmid/&rfr_iscdi=true