Loading…
On the stability of a convective motion generated by a chemically reacting fluid in a pipe
Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1738 |
creator | Koliskina, V. Kolyshkin, A. Volodko, I. Kalis, H. |
description | Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases. |
doi_str_mv | 10.1063/1.4952264 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4952264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121715745</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-f9a0223ce11debd8aa986e64b0cb69d82ed80f06bbf916527c3bf6924a4a56843</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZsTbJJdnOUolUo9KIgXkI-Jm3KdnfdTQv7793SgjdPc5hnZpgXoXtKZpTI_InOuBKMSX6BJlQImhWSyks0IUTxjPH86xrd9P2WEKaKopyg71WN0wZwn4yNVUwDbgI22DX1AVyKB8C7JsWmxmuooTMJPLbDEWxgF52pqgF3YEZZr3Go9tHjWI_tNrZwi66CqXq4O9cp-nx9-Zi_ZcvV4n3-vMxaJvKUBWUIY7kDSj1YXxqjSgmSW-KsVL5k4EsSiLQ2KCoFK1xug1SMG26ELHk-RQ-nvW3X_OyhT3rb7Lt6PKkZZbSgouBiVI8n1buYzPEl3XZxZ7pBH5pOU33OTbc-_Icp0ceg_wbyXwfBb5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121715745</pqid></control><display><type>conference_proceeding</type><title>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Koliskina, V. ; Kolyshkin, A. ; Volodko, I. ; Kalis, H.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Koliskina, V. ; Kolyshkin, A. ; Volodko, I. ; Kalis, H. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4952264</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Base flow ; Dimensionless numbers ; Equations of motion ; Flow stability ; Motion stability ; Organic chemistry ; Parameters ; Pipes ; Prandtl number ; Stability analysis ; Temperature distribution ; Thermodynamics</subject><ispartof>AIP conference proceedings, 2016, Vol.1738 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Koliskina, V.</creatorcontrib><creatorcontrib>Kolyshkin, A.</creatorcontrib><creatorcontrib>Volodko, I.</creatorcontrib><creatorcontrib>Kalis, H.</creatorcontrib><title>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</title><title>AIP conference proceedings</title><description>Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.</description><subject>Base flow</subject><subject>Dimensionless numbers</subject><subject>Equations of motion</subject><subject>Flow stability</subject><subject>Motion stability</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Pipes</subject><subject>Prandtl number</subject><subject>Stability analysis</subject><subject>Temperature distribution</subject><subject>Thermodynamics</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8CZsTbJJdnOUolUo9KIgXkI-Jm3KdnfdTQv7793SgjdPc5hnZpgXoXtKZpTI_InOuBKMSX6BJlQImhWSyks0IUTxjPH86xrd9P2WEKaKopyg71WN0wZwn4yNVUwDbgI22DX1AVyKB8C7JsWmxmuooTMJPLbDEWxgF52pqgF3YEZZr3Go9tHjWI_tNrZwi66CqXq4O9cp-nx9-Zi_ZcvV4n3-vMxaJvKUBWUIY7kDSj1YXxqjSgmSW-KsVL5k4EsSiLQ2KCoFK1xug1SMG26ELHk-RQ-nvW3X_OyhT3rb7Lt6PKkZZbSgouBiVI8n1buYzPEl3XZxZ7pBH5pOU33OTbc-_Icp0ceg_wbyXwfBb5A</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Koliskina, V.</creator><creator>Kolyshkin, A.</creator><creator>Volodko, I.</creator><creator>Kalis, H.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160608</creationdate><title>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</title><author>Koliskina, V. ; Kolyshkin, A. ; Volodko, I. ; Kalis, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-f9a0223ce11debd8aa986e64b0cb69d82ed80f06bbf916527c3bf6924a4a56843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Base flow</topic><topic>Dimensionless numbers</topic><topic>Equations of motion</topic><topic>Flow stability</topic><topic>Motion stability</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Pipes</topic><topic>Prandtl number</topic><topic>Stability analysis</topic><topic>Temperature distribution</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koliskina, V.</creatorcontrib><creatorcontrib>Kolyshkin, A.</creatorcontrib><creatorcontrib>Volodko, I.</creatorcontrib><creatorcontrib>Kalis, H.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koliskina, V.</au><au>Kolyshkin, A.</au><au>Volodko, I.</au><au>Kalis, H.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the stability of a convective motion generated by a chemically reacting fluid in a pipe</atitle><btitle>AIP conference proceedings</btitle><date>2016-06-08</date><risdate>2016</risdate><volume>1738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Linear stability analysis of a chemically reacting fluid motion in a pipe is performed in the present paper. The reaction rate has an Arrhenius form. The base flow and temperature distribution is obtained from the nonlinear heat equation coupled with the equations of motion. The stability of the flow with respect to asymmetric (spiral) perturbations is investigated numerically. The critical Grasshof number of the flow depends on two dimensionless parameters: the Prandtl number and the Frank-Kamenetsky parameter. The increase of both parameters has a destabilizing influence on the flow. It is shown that the second branch of a marginal stability curve corresponding to smaller critical Grasshof numbers appears as the Prandtl number increases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952264</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2016, Vol.1738 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4952264 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Base flow Dimensionless numbers Equations of motion Flow stability Motion stability Organic chemistry Parameters Pipes Prandtl number Stability analysis Temperature distribution Thermodynamics |
title | On the stability of a convective motion generated by a chemically reacting fluid in a pipe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20stability%20of%20a%20convective%20motion%20generated%20by%20a%20chemically%20reacting%20fluid%20in%20a%20pipe&rft.btitle=AIP%20conference%20proceedings&rft.au=Koliskina,%20V.&rft.date=2016-06-08&rft.volume=1738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4952264&rft_dat=%3Cproquest_scita%3E2121715745%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p253t-f9a0223ce11debd8aa986e64b0cb69d82ed80f06bbf916527c3bf6924a4a56843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121715745&rft_id=info:pmid/&rfr_iscdi=true |