Loading…
Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene
We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Fr...
Saved in:
Published in: | Journal of applied physics 2016-06, Vol.119 (24) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3 |
container_end_page | |
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Wang, Haidong Kurata, Kosaku Fukunaga, Takanobu Ago, Hiroki Takamatsu, Hiroshi Zhang, Xing Ikuta, Tatsuya Takahashi, Koji Nishiyama, Takashi Takata, Yasuyuki |
description | We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices. |
doi_str_mv | 10.1063/1.4954677 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4954677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121724090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</originalsourceid><addsrcrecordid>eNqd0M1LwzAUAPAgCs7pwf-g4EmhM0mbtjnK8AsGHtRzSJMXl9EmNUkH--_t2GB33-W9w4_3hdAtwQuCq-KRLErOyqquz9CM4IbnNWP4HM0wpiRveM0v0VWMG4wJaQo-Q_LT9mOXpAM_xqwHGccAPbiUeZNBByoFq2SXSaeztIbQT7XyTo8q2a1NFuIexjEO4DTorPfOd3IHIfsJcliDg2t0YWQX4eaY5-j75flr-ZavPl7fl0-rXJWUpBywJFKBrhU2hrVFhRmnRkJdtphr2lZMK2BVrdpCF9ooRblmFVWccd0wrIo5ujv09TFZEZVNoNbTqm66QVDKeDXFSQ3B_44Qk9j4MbhpMUEJJTUtMceTuj8oFXyMAYwYgu1l2AmCxf7Pgojjnyf7cLD7kTJZ7_6Htz6coBi0Kf4AQR2N5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121724090</pqid></control><display><type>article</type><title>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Haidong ; Kurata, Kosaku ; Fukunaga, Takanobu ; Ago, Hiroki ; Takamatsu, Hiroshi ; Zhang, Xing ; Ikuta, Tatsuya ; Takahashi, Koji ; Nishiyama, Takashi ; Takata, Yasuyuki</creator><creatorcontrib>Wang, Haidong ; Kurata, Kosaku ; Fukunaga, Takanobu ; Ago, Hiroki ; Takamatsu, Hiroshi ; Zhang, Xing ; Ikuta, Tatsuya ; Takahashi, Koji ; Nishiyama, Takashi ; Takata, Yasuyuki</creatorcontrib><description>We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4954677</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CARRIERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrical resistivity ; Electronic devices ; ELECTRONIC EQUIPMENT ; ELECTRONS ; GRAPHENE ; HEAT ; Heat conductivity ; HEAT TRANSFER ; LAYERS ; Lorenz number ; Monolayers ; PHONONS ; SENSORS ; SUBSTRATES ; TEMPERATURE RANGE 0273-0400 K ; THERMAL CONDUCTIVITY ; Thermodynamic properties ; WAVELENGTHS ; WIEDEMANN-FRANZ LAW</subject><ispartof>Journal of applied physics, 2016-06, Vol.119 (24)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</citedby><cites>FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</cites><orcidid>0000-0002-2187-5610 ; 0000-0002-5276-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22596666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haidong</creatorcontrib><creatorcontrib>Kurata, Kosaku</creatorcontrib><creatorcontrib>Fukunaga, Takanobu</creatorcontrib><creatorcontrib>Ago, Hiroki</creatorcontrib><creatorcontrib>Takamatsu, Hiroshi</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ikuta, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Koji</creatorcontrib><creatorcontrib>Nishiyama, Takashi</creatorcontrib><creatorcontrib>Takata, Yasuyuki</creatorcontrib><title>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</title><title>Journal of applied physics</title><description>We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.</description><subject>Applied physics</subject><subject>CARRIERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrical resistivity</subject><subject>Electronic devices</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ELECTRONS</subject><subject>GRAPHENE</subject><subject>HEAT</subject><subject>Heat conductivity</subject><subject>HEAT TRANSFER</subject><subject>LAYERS</subject><subject>Lorenz number</subject><subject>Monolayers</subject><subject>PHONONS</subject><subject>SENSORS</subject><subject>SUBSTRATES</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Thermodynamic properties</subject><subject>WAVELENGTHS</subject><subject>WIEDEMANN-FRANZ LAW</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0M1LwzAUAPAgCs7pwf-g4EmhM0mbtjnK8AsGHtRzSJMXl9EmNUkH--_t2GB33-W9w4_3hdAtwQuCq-KRLErOyqquz9CM4IbnNWP4HM0wpiRveM0v0VWMG4wJaQo-Q_LT9mOXpAM_xqwHGccAPbiUeZNBByoFq2SXSaeztIbQT7XyTo8q2a1NFuIexjEO4DTorPfOd3IHIfsJcliDg2t0YWQX4eaY5-j75flr-ZavPl7fl0-rXJWUpBywJFKBrhU2hrVFhRmnRkJdtphr2lZMK2BVrdpCF9ooRblmFVWccd0wrIo5ujv09TFZEZVNoNbTqm66QVDKeDXFSQ3B_44Qk9j4MbhpMUEJJTUtMceTuj8oFXyMAYwYgu1l2AmCxf7Pgojjnyf7cLD7kTJZ7_6Htz6coBi0Kf4AQR2N5g</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Wang, Haidong</creator><creator>Kurata, Kosaku</creator><creator>Fukunaga, Takanobu</creator><creator>Ago, Hiroki</creator><creator>Takamatsu, Hiroshi</creator><creator>Zhang, Xing</creator><creator>Ikuta, Tatsuya</creator><creator>Takahashi, Koji</creator><creator>Nishiyama, Takashi</creator><creator>Takata, Yasuyuki</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2187-5610</orcidid><orcidid>https://orcid.org/0000-0002-5276-7452</orcidid></search><sort><creationdate>20160628</creationdate><title>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</title><author>Wang, Haidong ; Kurata, Kosaku ; Fukunaga, Takanobu ; Ago, Hiroki ; Takamatsu, Hiroshi ; Zhang, Xing ; Ikuta, Tatsuya ; Takahashi, Koji ; Nishiyama, Takashi ; Takata, Yasuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>CARRIERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrical resistivity</topic><topic>Electronic devices</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ELECTRONS</topic><topic>GRAPHENE</topic><topic>HEAT</topic><topic>Heat conductivity</topic><topic>HEAT TRANSFER</topic><topic>LAYERS</topic><topic>Lorenz number</topic><topic>Monolayers</topic><topic>PHONONS</topic><topic>SENSORS</topic><topic>SUBSTRATES</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Thermodynamic properties</topic><topic>WAVELENGTHS</topic><topic>WIEDEMANN-FRANZ LAW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haidong</creatorcontrib><creatorcontrib>Kurata, Kosaku</creatorcontrib><creatorcontrib>Fukunaga, Takanobu</creatorcontrib><creatorcontrib>Ago, Hiroki</creatorcontrib><creatorcontrib>Takamatsu, Hiroshi</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ikuta, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Koji</creatorcontrib><creatorcontrib>Nishiyama, Takashi</creatorcontrib><creatorcontrib>Takata, Yasuyuki</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haidong</au><au>Kurata, Kosaku</au><au>Fukunaga, Takanobu</au><au>Ago, Hiroki</au><au>Takamatsu, Hiroshi</au><au>Zhang, Xing</au><au>Ikuta, Tatsuya</au><au>Takahashi, Koji</au><au>Nishiyama, Takashi</au><au>Takata, Yasuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</atitle><jtitle>Journal of applied physics</jtitle><date>2016-06-28</date><risdate>2016</risdate><volume>119</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4954677</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2187-5610</orcidid><orcidid>https://orcid.org/0000-0002-5276-7452</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-06, Vol.119 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4954677 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics CARRIERS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electrical resistivity Electronic devices ELECTRONIC EQUIPMENT ELECTRONS GRAPHENE HEAT Heat conductivity HEAT TRANSFER LAYERS Lorenz number Monolayers PHONONS SENSORS SUBSTRATES TEMPERATURE RANGE 0273-0400 K THERMAL CONDUCTIVITY Thermodynamic properties WAVELENGTHS WIEDEMANN-FRANZ LAW |
title | Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20measurement%20of%20electrical%20and%20thermal%20conductivities%20of%20suspended%20monolayer%20graphene&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Haidong&rft.date=2016-06-28&rft.volume=119&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4954677&rft_dat=%3Cproquest_scita%3E2121724090%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121724090&rft_id=info:pmid/&rfr_iscdi=true |