Loading…

Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Fr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-06, Vol.119 (24)
Main Authors: Wang, Haidong, Kurata, Kosaku, Fukunaga, Takanobu, Ago, Hiroki, Takamatsu, Hiroshi, Zhang, Xing, Ikuta, Tatsuya, Takahashi, Koji, Nishiyama, Takashi, Takata, Yasuyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3
cites cdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 119
creator Wang, Haidong
Kurata, Kosaku
Fukunaga, Takanobu
Ago, Hiroki
Takamatsu, Hiroshi
Zhang, Xing
Ikuta, Tatsuya
Takahashi, Koji
Nishiyama, Takashi
Takata, Yasuyuki
description We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.
doi_str_mv 10.1063/1.4954677
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4954677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121724090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</originalsourceid><addsrcrecordid>eNqd0M1LwzAUAPAgCs7pwf-g4EmhM0mbtjnK8AsGHtRzSJMXl9EmNUkH--_t2GB33-W9w4_3hdAtwQuCq-KRLErOyqquz9CM4IbnNWP4HM0wpiRveM0v0VWMG4wJaQo-Q_LT9mOXpAM_xqwHGccAPbiUeZNBByoFq2SXSaeztIbQT7XyTo8q2a1NFuIexjEO4DTorPfOd3IHIfsJcliDg2t0YWQX4eaY5-j75flr-ZavPl7fl0-rXJWUpBywJFKBrhU2hrVFhRmnRkJdtphr2lZMK2BVrdpCF9ooRblmFVWccd0wrIo5ujv09TFZEZVNoNbTqm66QVDKeDXFSQ3B_44Qk9j4MbhpMUEJJTUtMceTuj8oFXyMAYwYgu1l2AmCxf7Pgojjnyf7cLD7kTJZ7_6Htz6coBi0Kf4AQR2N5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121724090</pqid></control><display><type>article</type><title>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Haidong ; Kurata, Kosaku ; Fukunaga, Takanobu ; Ago, Hiroki ; Takamatsu, Hiroshi ; Zhang, Xing ; Ikuta, Tatsuya ; Takahashi, Koji ; Nishiyama, Takashi ; Takata, Yasuyuki</creator><creatorcontrib>Wang, Haidong ; Kurata, Kosaku ; Fukunaga, Takanobu ; Ago, Hiroki ; Takamatsu, Hiroshi ; Zhang, Xing ; Ikuta, Tatsuya ; Takahashi, Koji ; Nishiyama, Takashi ; Takata, Yasuyuki</creatorcontrib><description>We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4954677</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CARRIERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrical resistivity ; Electronic devices ; ELECTRONIC EQUIPMENT ; ELECTRONS ; GRAPHENE ; HEAT ; Heat conductivity ; HEAT TRANSFER ; LAYERS ; Lorenz number ; Monolayers ; PHONONS ; SENSORS ; SUBSTRATES ; TEMPERATURE RANGE 0273-0400 K ; THERMAL CONDUCTIVITY ; Thermodynamic properties ; WAVELENGTHS ; WIEDEMANN-FRANZ LAW</subject><ispartof>Journal of applied physics, 2016-06, Vol.119 (24)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</citedby><cites>FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</cites><orcidid>0000-0002-2187-5610 ; 0000-0002-5276-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22596666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haidong</creatorcontrib><creatorcontrib>Kurata, Kosaku</creatorcontrib><creatorcontrib>Fukunaga, Takanobu</creatorcontrib><creatorcontrib>Ago, Hiroki</creatorcontrib><creatorcontrib>Takamatsu, Hiroshi</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ikuta, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Koji</creatorcontrib><creatorcontrib>Nishiyama, Takashi</creatorcontrib><creatorcontrib>Takata, Yasuyuki</creatorcontrib><title>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</title><title>Journal of applied physics</title><description>We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.</description><subject>Applied physics</subject><subject>CARRIERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrical resistivity</subject><subject>Electronic devices</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ELECTRONS</subject><subject>GRAPHENE</subject><subject>HEAT</subject><subject>Heat conductivity</subject><subject>HEAT TRANSFER</subject><subject>LAYERS</subject><subject>Lorenz number</subject><subject>Monolayers</subject><subject>PHONONS</subject><subject>SENSORS</subject><subject>SUBSTRATES</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Thermodynamic properties</subject><subject>WAVELENGTHS</subject><subject>WIEDEMANN-FRANZ LAW</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0M1LwzAUAPAgCs7pwf-g4EmhM0mbtjnK8AsGHtRzSJMXl9EmNUkH--_t2GB33-W9w4_3hdAtwQuCq-KRLErOyqquz9CM4IbnNWP4HM0wpiRveM0v0VWMG4wJaQo-Q_LT9mOXpAM_xqwHGccAPbiUeZNBByoFq2SXSaeztIbQT7XyTo8q2a1NFuIexjEO4DTorPfOd3IHIfsJcliDg2t0YWQX4eaY5-j75flr-ZavPl7fl0-rXJWUpBywJFKBrhU2hrVFhRmnRkJdtphr2lZMK2BVrdpCF9ooRblmFVWccd0wrIo5ujv09TFZEZVNoNbTqm66QVDKeDXFSQ3B_44Qk9j4MbhpMUEJJTUtMceTuj8oFXyMAYwYgu1l2AmCxf7Pgojjnyf7cLD7kTJZ7_6Htz6coBi0Kf4AQR2N5g</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Wang, Haidong</creator><creator>Kurata, Kosaku</creator><creator>Fukunaga, Takanobu</creator><creator>Ago, Hiroki</creator><creator>Takamatsu, Hiroshi</creator><creator>Zhang, Xing</creator><creator>Ikuta, Tatsuya</creator><creator>Takahashi, Koji</creator><creator>Nishiyama, Takashi</creator><creator>Takata, Yasuyuki</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2187-5610</orcidid><orcidid>https://orcid.org/0000-0002-5276-7452</orcidid></search><sort><creationdate>20160628</creationdate><title>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</title><author>Wang, Haidong ; Kurata, Kosaku ; Fukunaga, Takanobu ; Ago, Hiroki ; Takamatsu, Hiroshi ; Zhang, Xing ; Ikuta, Tatsuya ; Takahashi, Koji ; Nishiyama, Takashi ; Takata, Yasuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>CARRIERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrical resistivity</topic><topic>Electronic devices</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ELECTRONS</topic><topic>GRAPHENE</topic><topic>HEAT</topic><topic>Heat conductivity</topic><topic>HEAT TRANSFER</topic><topic>LAYERS</topic><topic>Lorenz number</topic><topic>Monolayers</topic><topic>PHONONS</topic><topic>SENSORS</topic><topic>SUBSTRATES</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Thermodynamic properties</topic><topic>WAVELENGTHS</topic><topic>WIEDEMANN-FRANZ LAW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haidong</creatorcontrib><creatorcontrib>Kurata, Kosaku</creatorcontrib><creatorcontrib>Fukunaga, Takanobu</creatorcontrib><creatorcontrib>Ago, Hiroki</creatorcontrib><creatorcontrib>Takamatsu, Hiroshi</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Ikuta, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Koji</creatorcontrib><creatorcontrib>Nishiyama, Takashi</creatorcontrib><creatorcontrib>Takata, Yasuyuki</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haidong</au><au>Kurata, Kosaku</au><au>Fukunaga, Takanobu</au><au>Ago, Hiroki</au><au>Takamatsu, Hiroshi</au><au>Zhang, Xing</au><au>Ikuta, Tatsuya</au><au>Takahashi, Koji</au><au>Nishiyama, Takashi</au><au>Takata, Yasuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene</atitle><jtitle>Journal of applied physics</jtitle><date>2016-06-28</date><risdate>2016</risdate><volume>119</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4954677</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2187-5610</orcidid><orcidid>https://orcid.org/0000-0002-5276-7452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-06, Vol.119 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4954677
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
CARRIERS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electrical resistivity
Electronic devices
ELECTRONIC EQUIPMENT
ELECTRONS
GRAPHENE
HEAT
Heat conductivity
HEAT TRANSFER
LAYERS
Lorenz number
Monolayers
PHONONS
SENSORS
SUBSTRATES
TEMPERATURE RANGE 0273-0400 K
THERMAL CONDUCTIVITY
Thermodynamic properties
WAVELENGTHS
WIEDEMANN-FRANZ LAW
title Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20measurement%20of%20electrical%20and%20thermal%20conductivities%20of%20suspended%20monolayer%20graphene&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Haidong&rft.date=2016-06-28&rft.volume=119&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4954677&rft_dat=%3Cproquest_scita%3E2121724090%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-e0a1aced7c0ff5b360592fae74b09d2b65dce567cb3d3dfcc29d562c959d850c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121724090&rft_id=info:pmid/&rfr_iscdi=true