Loading…

Enhanced breakdown strength of poly(vinylidene fluoride) utilizing rubber nanoparticles for energy storage application

A kind of rubber nanoparticles, methyl methacrylate-butadiene-styrene (MBS), was applied into poly(vinylidene fluoride) (PVDF) matrix to fabricate MBS/PVDF composite films. Uniform dispersion and good compatibility of MBS in the matrix were observed. We found that the entanglement state between MBS...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-08, Vol.109 (7)
Main Authors: Zheng, Ming-Sheng, Zha, Jun-Wei, Yang, Yu, Han, Peng, Hu, Chao-He, Dang, Zhi-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A kind of rubber nanoparticles, methyl methacrylate-butadiene-styrene (MBS), was applied into poly(vinylidene fluoride) (PVDF) matrix to fabricate MBS/PVDF composite films. Uniform dispersion and good compatibility of MBS in the matrix were observed. We found that the entanglement state between MBS nanoparticles and random chains of PVDF could diminish gaps in the matrix, which is helpful for high breakdown strength. The composite film with 12 vol. % MBS showed the maximum breakdown strength of 535 MV/m and the high energy density of 9.85 J/cm3, which were 1.7 times and about 2.2 times higher than pure PVDF film, respectively.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4961252